

	topic	c 11 Ideal Gases Page 2	
994		Use the data in Fig. 2.1 to calculate the thermal energy required to convert 1.0 cm ³ of ethanol at 20 °C into vapour at its normal boiling point. [6]	larning CORNER
	(e)	(i) State the first law of thermodynamics.	
	(0)	(ii) Suggest why there is a considerable difference in magnitude between the specific [5] latent heats of fusion and vaporisation. [J99/P3/Q2]	
		and Solution	
	Sug	ggested Solution:	
		Similarity: Both modes of energy transfer require a medium. Difference: In conduction, thermal energy is transferred through the vibration of molecules about their average positions which remain unchanged.	pre na echoceid (a) (ii)
		In convection, thermal energy is transferred through the bulk motion of a region in a fluid due to differences in the density arising from	
		temperature differences.	h) (i) This situation is referred
	(b)	between them.	 to as "thermal equilibrium".
		(ii) When body H has a higher temperature than body C, thermal energy from body H will be transferred to body C until the two bodies attain the same temperature.	
	(c)	(i) Firstly, the physical property should be measured at two constant temperatures or fixed points - the lower fixed point being the melting point of ice and the upper fixed point being the temperature of steam in contact with water boiling at dard atmospheric pressure.	
		Secondly, a temperature on its empiral centigrade scale may be found by measuring the physical property and interpolating by using the following formula:	
		$\theta = \frac{x_s - x_\theta}{x_s - x_i} \times 100 ^{\circ}\text{C}$	
		where θ is a temperature being measured.	
		$x_{\rm s}$ is the value of the physical property at steam point.	
		x is the value of the physical property at ice point.	
		x_{θ} is the value of the physical property at the temperature θ .	
		(ii) The two thermometers do not agree at all temperatures because the physical properties used do not vary with temperature in exactly the same manner.	or the percelos of the Brook
	(d)	Thermal energy required	(d) The student need not co vert all units for mass ar
	,-,	= Thermal energy required to raise temperature of ethanol to its boiling point + Thermal energy required to vapourise the ethanol	dimension to kg and r provided he is consistent
		$= mc\Delta\theta + mL_{v}$	the substitution of the value
		$=m(c\Delta\theta+L_{\nu})$	as shown in the solution
		$= pV(c\Delta\theta + L_{v})$	
		= $(0.79 \text{ gcm}^{-3})(1.0 \text{ cm}^3)[)2.4 \text{ Jg}^{-1} \text{ K}^{-1})(78 - 20 \text{ K}) + 840 \text{ Jg}^{-1}] = 774 \text{ J}$	
	(e)	(i) The First Law of Thermodynamics states that the total energy in a closed system is constant. Hence the increase in internal energy of a system is the sum of the work done on the system and the thermal energy supplied to the system.	
		(ii) There is no change in the temperature at fusion or vaporisation. Hence for both processes, the increase in internal energy, ΔU = 0.	
		Hence $Q = -W$ i.e. thermal energy supplied to system = work done by system. The work done by the system during a phase change depends on the product of the external pressure, p, exerted on the system and the change in volume, ΔV , of the system.	
		The change in volume when ethanol changes from liquid into vapour is larger than when ethanol changes from solid to liquid. This is because, the ethanol molecules are spaced much more further apart in the vapour states compared to the liquid state. On the other hand, the spacing between the ethanol molecules in the solid and liquid states are similar. This means that work done by the ethanol in expanding against the atmosphere is larger during vaporisation than during melting. Hence, the thermal energy required for vaporisation is larger than that for melting.	

(iii) distinguish between the behaviour of an unsaturative. (b) State the feature of the line on Fig. 8.1 which indicates that large changes in pressure are required to produce small changes in volume of a liquid. (c) In order to produce small changes in volume of a liquid. (d) In order to produce small changes in volume of a liquid. (d) In order to produce small changes in volume of a liquid. (e) In order to produce small changes in volume of a liquid. (ii) In order to produce small changes in volume of a liquid. (iii) In order to produce small changes in volume of a liquid. (iii) In order to produce small changes in volume of a liquid. (iv) In order to produce small changes in volume of a liquid. (iv) In order to produce small changes in volume of a volume of the liquid small	topic 11 Ideal Gas	63		Page 4	earning CORNER
(b) State the feature of the line on Fig. 8.1 which indicates that large changes in pressure are required to produce small changes in volume of a liquid. (c) In order to produce is mall changes in volume of a liquid. (d) In early experiments a three orders are the pressure alone, the vapour must be below a particular temperature which is different for different substances. This temperature is known as the critical temperature, or the substance, Fig. 8.3 lists some substances and the corresponding critical temperatures, measured in kelvin. Substance To / K hydrogen 126 oxygen 154 carbon dioxide 304 ammonia 406 oxygen 154 carbon dioxide 431 water 156 oxygen 154 carbon dioxide 431 water 157 oxygen 154 carbon dioxide 431 water 157 oxygen 154 carbon dioxide 431 water 158 oxygen 158 oxygen	(iii) distinguish vapour who	between the behaviour of a	n unsaturated vapour and t constant temperature.	a saturated	sopposition of the second
(c) In order to produce liquid by increasing the pressure alone, the vapour must be below a particular temperature which is different of different substances. This temperature is known as the critical temperature T ₂ of the substance, Fig. 8.3 lists some substances and the corresponding critical temperatures, measured in kelvin. Substance T _c / K hydrogen 126 oxygen 154 carbon dioxide 431 water Fig. 8.3 Use Fig. 8.2 complete Fig. 8.3 for water. [1] (d) in early experiments to try to liquefy gases, increase in pressure alone was used. Gases which could not be liquefed at room temperature by pressure alone were known as permanent gases. (i) List the substances in Fig. 8.3 which would have been known as permanent gases. (ii) Suggest, with a reason, which substance listed in Fig. 8.3 proved to be most useful in early experimental work on the behaviour of a vapour near to its critical temperature.	(b) State the feature	of the line on Fig. 8.1 which	indicates that large changes	s in pressure [1]	
substance	(c) In order to produce below a particular temperature in	duce liquid by increasing the	e pressure alone, the vap different for different substrature <i>T</i> of the substance.	Fig. 8.3 lists	
hydrogen 126 oxygen 154 carbon dioxide 304 ammonia 406 sulphur dioxide 431 water [1] Fig. 8.3 Use Fig. 8.2 complete Fig. 8.3 for water. [1] (d) In early experiments to try to liquelfy gases, increase in pressure alone was used. Gases which could not be liquelfied at room temperature by pressure alone were known as permanent gases. (i) List the substances in Fig. 8.3 which would have been known as permanent gases. (ii) Suggest, with a reason, which substance listed in Fig. 8.3 proved to be most useful in early experimental work on the behaviour of a vapour near to its critical temperature. (e) Scientists investigating the behaviour of gases first used atmospheric air. As a result of their investigations, the gas laws were developed. (i) State the ideal gas equation. (ii) By reference to Figs 8.2 and 8.3, suggest why 1. it was fortunate for the early investigators of gas laws that atmospheric air is composed mainly of nitrogen and oxygen. 2. when verifying the gas laws in a school laboratory, water vapour should be removed from the sample of air. [D93/O2/O8] Suggested Solution: (a) (i) 1. 'An isothermal change' refers to a change that takes place under constant temperature. 2. 'The vapour condenses' refers to the phenomenon where the water undergoes a change of state from the gaseous to the liquid state. (ii) An unsaturated vapour does not coexist with any liquid but a saturated vapour does. (iii) The pressure exerted by an unsaturated vapour increases when the volume is reduced at constant temperature. (b) Segment DC of the line on Fig. 8.1 shows that large changes in pressure are required to produce small changes in volume of a liquid, as shown by the large gradient of the				ine AB in Fig. 8.1.	
Introgen 126 oxygen 154 carbon dioxide 304 ammonia 406 suphur dioxide 431 water Fig. 8.3 Use Fig. 8.2 complete Fig. 8.3 for water. [1] (d) In early experiments to try to liquefy gases, increase in pressure alone was used. Gases which could not be liquefied at room temperature by pressure alone were known as permanent gases. (i) List the substances in Fig. 8.3 which would have been known as permanent gases. (ii) Suggest, with a reason, which substance listed in Fig. 8.3 proved to be most useful in early experimental work on the behaviour of a vapour near to its critical temperature. (e) Scientists investigating the behaviour of gases first used atmospheric air. As a result of their investigations, the gas laws were developed. (i) State the ideal gas equation. (ii) By reference to Figs 8.2 and 8.3, suggest why 1. it was fortunate for the early investigators of gas laws that atmospheric air is composed mainly of nitrogen and oxygen. 2. when verifying the gas laws in a school laboratory, water vapour should be removed from the sample of air. (ii) Suggested Solution: (a) (i) 1. 'An isothermal change' refers to a change that takes place under constant temperature. 2. The vapour condenses' refers to the phenomenon where the water undergoes a change of state from the gaseous to the liquid state. (ii) An unsaturated vapour does not coexist with any liquid but a saturated vapour one that is in contact with reduced at constant temperature. (iii) The pressure exerted by an unsaturated vapour increases when the volume is reduced at constant themperature but the pressure exerted by a saturated vapour one that is in contact with own liquid our remains constant when the volume is reduced at constant temperature. (b) Segment DC of the line on Fig. 8.1 shows that large changes in pressure are required to produce small changes in volume of a liquid, as shown by the large gradient of the				ie I	
oxygen and the carbon dioxide animonial and animonial an					
carbon dloxide ammonia auhrur diox ide aumhonia auhrur diox ide auhrur diox id					
ammonia sulphur diox ide water Fig. 8.3 Use Fig. 8.2 complete Fig. 8.3 for water. (d) In early experiments to try to liquefy gases, increase in pressure alone was used. Gases which could not be diquefied at room temperature by pressure alone were known as permanent gases. (i) List the substances in Fig. 8.3 which would have been known as permanent gases. (ii) Suggest, with a reason, which substance listed in Fig. 8.3 proved to be most useful in early experimental work on the behaviour of a vapour near to its critical temperature. (e) Scientists investigating the behaviour of gases first used atmospheric air. As a result of their investigations, the gas laws were developed. (i) State the ideal gas equation. (ii) By reference to Figs 8.2 and 8.3, suggest why 1. it was fortunate for the early investigators of gas laws that atmospheric air is composed mainly of nitrogen and oxygen. 2. when verifying the gas laws in a school laboratory, water vapour should be removed from the sample of air. [5] Suggested Solution: (a) (i) 1. 'An isothermal change' refers to a change that takes place under constant temperature. 2. 'The vapour condenses' refers to the phenomenon where the water undergoes a change of state from the gaseous to the liquid state. (ii) An unsaturated vapour does not coexist with any liquid but a saturated vapour one that is in contact with own liquid. (iii) The pressure exerted by an unsaturated vapour increases when the volume is reduced at constant temperature but the pressure exerted by a saturated vapour one that is in contact with own liquid.					
Fig. 8.3 Use Fig. 8.2 complete Fig. 8.3 for water. (d) In early experiments to try to liquefy gases, increase in pressure alone was used. Gases which could not be liquefied at room temperature by pressure alone were known as permanent gases. (i) List the substances in Fig. 8.3 which would have been known as permanent gases. (ii) Suggest, with a reason, which substance listed in Fig. 8.3 proved to be most useful in early experimental work on the behaviour of a vapour near to its critical temperature. (e) Scientists investigating the behaviour of gases first used atmospheric air. As a result of their investigations, the gas laws were developed. (i) State the ideal gas equation. (ii) By reference to Figs 8.2 and 8.3, suggest why 1. it was fortunate for the early investigators of gas laws that atmospheric air is composed mainly of nitrogen and oxygen. 2. when verifying the gas laws in a school laboratory, water vapour should be removed from the sample of air. [D99/O2/Q8] Suggested Solution: (a) (i) 1. 'An isothermal change' refers to a change that takes place under constant temperature. 2. The vapour condenses' refers to the phenomenon where the water undergoes a change of state from the gaseous to the liquid state. (ii) An unsaturated vapour does not coexist with any liquid but a saturated vapour does. (iii) The pressure exerted by an unsaturated vapour increases when the volume is reduced at constant temperature but the pressure exerted by a saturated vapour one that is in contact with own liquid. (iii) The pressure exerted by an unsaturated vapour increases when the volume is reduced at constant temperature but the pressure exerted by a saturated vapour one that is in contact with own liquid.					
Fig. 8.3 Use Fig. 8.2 complete Fig. 8.3 for water. (d) In early experiments to try to liquefy gases, increase in pressure alone was used. Gases which could not be liquefied at room temperature by pressure alone were known as permanent gases. (i) List the substances in Fig. 8.3 which would have been known as permanent gases. (ii) Suggest, with a reason, which substance listed in Fig. 8.3 proved to be most useful in early experimental work on the behaviour of a vapour near to its critical temperature. (e) Scientists investigating the behaviour of gases first used atmospheric air. As a result of their investigating the behaviour of gases first used atmospheric air. As a result of their investigations, the gas laws were developed. (i) State the ideal gas equation. (ii) By reference to Figs 8.2 and 8.3, suggest why 1. it was fortunate for the early investigators of gas laws that atmospheric air is composed mainly of nitrogen and oxygen. 2. when verifying the gas laws in a school laboratory, water vapour should be removed from the sample of air. [D39/O2/O8] Suggested Solution: (a) (i) 1. 'An isothermal change' refers to a change that takes place under constant temperature. 2. 'The vapour condenses' refers to the phenomenon where the water undergoes a change of state from the gaseous to the liquid state. (ii) An unsaturated vapour does not coexist with any liquid but a saturated vapour does. (iii) The pressure exerted by an unsaturated vapour increases when the volume is reduced at constant temperature but the pressure exerted by a saturated vapour one that is in contact with own liquid. (ii) A saturated vapour one that is in contact with own liquid. (iii) Segment DC of the line on Fig. 8.1 shows that large changes in pressure are required to produce small changes in volume of a liquid, as shown by the large gradient of the					
Fig. 8.3 Use Fig. 8.2 complete Fig. 8.3 for water. (d) In early experiments to try to liquely gases, increase in pressure alone was used. Gases which could not be liquelifed at room temperature by pressure alone were known as permanent gases. (i) List the substances in Fig. 8.3 which would have been known as permanent gases. (ii) Suggest, with a reason, which substance listed in Fig. 8.3 proved to be most useful in early experimental work on the behaviour of a vapour near to its critical temperature. (e) Scientists investigating the behaviour of gases first used atmospheric air. As a result of their investigations, the gas laws were developed. (i) State the ideal gas equation. (ii) By reference to Figs 8.2 and 8.3, suggest why 1. it was fortunate for the early investigators of gas laws that atmospheric air is composed mainly of nitrogen and oxygen. 2. when verifying the gas laws in a school laboratory, water vapour should be removed from the sample of air. [15] Suggested Solution: (a) (i) 1. 'An isothermal change' refers to a change that takes place under constant temperature. 2. 'The vapour condenses' refers to the phenomenon where the water undergoes a change of state from the gaseous to the liquid state. (ii) An unsaturated vapour does not coexist with any liquid but a saturated vapour does. (iii) The pressure exerted by an unsaturated vapour increases when the volume is reduced at constant temperature but the pressure exerted by a saturated vapour one that is in contact with own liquid. (iii) The pressure exerted by an unsaturated vapour increases when the volume is reduced at constant temperature. (b) Segment DC of the line on Fig. 8.1 shows that large changes in pressure are required to produce small changes in volume of a liquid, as shown by the large gradient of the					
Use Fig. 8.2 complete Fig. 8.3 for water. (d) In early experiments to try to liquefy gases, increase in pressure alone was used. Gases which could not be liquefied at room temperature by pressure alone were known as permanent gases. (i) List the substances in Fig. 8.3 which would have been known as permanent gases. (ii) Suggest, with a reason, which substance listed in Fig. 8.3 proved to be most useful in early experimental work on the behaviour of a vapour near to its critical temperature. (e) Scientists investigating the behaviour of gases first used atmospheric air. As a result of their investigations, the gas laws were developed. (i) State the ideal gas equation. (ii) By reference to Figs' 8.2 and 8.3, suggest why 1. it was fortunate for the early investigators of gas laws that atmospheric air is composed mainly of nitrogen and oxygen. 2. when verifying the gas laws in a school laboratory, water vapour should be removed from the sample of air. [5] Suggested Solution: (a) (i) 1. 'An isothermal change' refers to a change that takes place under constant temperature. 2. 'The vapour condenses' refers to the phenomenon where the water undergoes a change of state from the gaseous to the liquid state. (ii) An unsaturated vapour does not coexist with any liquid but a saturated vapour does. (iii) The pressure exerted by an unsaturated vapour increases when the volume is reduced at constant temperature but the pressure exerted by a saturated vapour one that is in contact with own liquid.		Titalo,			
(d) In early experiments to try to liquefy gases, increase in pressure alone was used. Gases which could not be liquefied at room temperature by pressure alone were known as permanent gases. (i) List the substances in Fig. 8.3 which would have been known as permanent gases. (ii) Suggest, with a reason, which substance listed in Fig. 8.3 proved to be most useful in early experimental work on the behaviour of a vapour near to its critical temperature. (e) Scientists investigating the behaviour of gases first used atmospheric air. As a result of their investigations, the gas laws were developed. (i) State the ideal gas equation. (ii) By reference to Figs 8.2 and 8.3, suggest why 1. it was fortunate for the early investigators of gas laws that atmospheric air is composed mainly of nitrogen and oxygen. 2. when verifying the gas laws in a school laboratory, water vapour should be removed from the sample of air. [5] Suggested Solution: (a) (i) 1. 'An isothermal change' refers to a change that takes place under constant temperature. 2. 'The vapour condenses' refers to the phenomenon where the water undergoes a change of state from the gaseous to the liquid state. (ii) An unsaturated vapour does not coexist with any liquid but a saturated vapour does. (iii) The pressure exerted by an unsaturated vapour increases when the volume is reduced at constant temperature but the pressure exerted by a saturated vapour one that is in contact with own liquid. (b) Segment DC of the line on Fig. 8.1 shows that large changes in pressure are required to produce small changes in volume of a liquid, as shown by the large gradient of the		Fig. 8.3			
 (d) In early experiments to try to liquefy gases, increase in pressure alone was used. Gases which could not be liquefied at room temperature by pressure alone were known as permanent gases. (i) List the substances in Fig. 8.3 which would have been known as permanent gases. (ii) Suggest, with a reason, which substance listed in Fig. 8.3 proved to be most useful in early experimental work on the behaviour of a vapour near to its critical temperature. (e) Scientists investigating the behaviour of gases first used atmospheric air. As a result of their investigations, the gas laws were developed. (i) State the ideal gas equation. (ii) By reference to Figs 8.2 and 8.3, suggest why 1. it was fortunate for the early investigators of gas laws that atmospheric air is composed mainly of nitrogen and oxygen. 2. when verifying the gas laws in a school laboratory, water vapour should be removed from the sample of air. [D99/O2/Q8] Suggested Solution: (a) (i) 1. 'An isothermal change' refers to a change that takes place under constant temperature. 2. 'The vapour condenses' refers to the phenomenon where the water undergoes a change of state from the gaseous to the liquid state. (ii) An unsaturated vapour does not coexist with any liquid but a saturated vapour does. (iii) The pressure exerted by an unsaturated vapour increases when the volume is reduced at constant temperature but the pressure exerted by a saturated vapour one that is in contact with own liquid. (b) Segment DC of the line on Fig. 8.1 shows that large changes in pressure are required to produce small changes in volume of a liquid, as shown by the large gradient of the 	Use Fig. 8.2 c	omplete Fig. 8.3 for water.		[1]	
Gases which could not be liquefied at room temperature by pressure alone were known as permanent gases. (i) List the substances in Fig. 8.3 which would have been known as permanent gases. (ii) Suggest, with a reason, which substance listed in Fig. 8.3 proved to be most useful in early experimental work on the behaviour of a vapour near to its critical temperature. (e) Scientists investigating the behaviour of gases first used atmospheric air. As a result of their investigations, the gas laws were developed. (i) State the ideal gas equation. (ii) By reference to Figs 8.2 and 8.3, suggest why 1. it was fortunate for the early investigators of gas laws that atmospheric air is composed mainly of nitrogen and oxygen. 2. when verifying the gas laws in a school laboratory, water vapour should be removed from the sample of air. [5] Suggested Solution: (a) (i) 1. 'An isothermal change' refers to a change that takes place under constant temperature. 2. 'The vapour condenses' refers to the phenomenon where the water undergoes a change of state from the gaseous to the liquid state. (ii) An unsaturated vapour does not coexist with any liquid but a saturated vapour does. (iii) The pressure exerted by an unsaturated vapour increases when the volume is reduced at constant temperature but the pressure exerted by a saturated vapour one that is in contact with own liquid. (b) Segment DC of the line on Fig. 8.1 shows that large changes in pressure are required to produce small changes in volume of a liquid, as shown by the large gradient of the	(d) In early experi	ments to try to liquefy gases	s, increase in pressure alo	ne was used.	
gases. (II) Suggest, with a reason, which substance listed in Fig. 8.3 proved to be most useful in early experimental work on the behaviour of a vapour near to its critical temperature. (e) Scientists investigating the behaviour of gases first used atmospheric air. As a result of their investigations, the gas laws were developed. (i) State the ideal gas equation. (ii) By reference to Figs 8.2 and 8.3, suggest why 1. it was fortunate for the early investigators of gas laws that atmospheric air is composed mainly of nitrogen and oxygen. 2. when verifying the gas laws in a school laboratory, water vapour should be removed from the sample of air. [D99/O2/Q8] Suggested Solution: (a) (i) 1. 'An isothermal change' refers to a change that takes place under constant temperature. 2. 'The vapour condenses' refers to the phenomenon where the water undergoes a change of state from the gaseous to the liquid state. (ii) An unsaturated vapour does not coexist with any liquid but a saturated vapour does. (iii) An unsaturated vapour does not coexist with any liquid but a saturated vapour one that is in contact with reduced at constant temperature but the pressure exerted by a saturated vapour remains constant themperature but the pressure exerted by a saturated vapour remains constant themperature but the pressure exerted by a saturated vapour remains constant themperature but the pressure exerted by a saturated vapour one that is in contact with own liquid.	Gases which o	could not be liquefied at roc manent gases.	m temperature by pressu	e alone were	
useful in early experimental work on the behaviour of a vapour near to its critical temperature. (e) Scientists investigating the behaviour of gases first used atmospheric air. As a result of their investigations, the gas laws were developed. (i) State the ideal gas equation. (ii) By reference to Figs 8.2 and 8.3, suggest why 1. it was fortunate for the early investigators of gas laws that atmospheric air is composed mainly of nitrogen and oxygen. 2. when verifying the gas laws in a school laboratory, water vapour should be removed from the sample of air. [D99/O2/O8] Suggested Solution: (a) (i) 1. 'An isothermal change' refers to a change that takes place under constant temperature. 2. 'The vapour condenses' refers to the phenomenon where the water undergoes a change of state from the gaseous to the liquid state. (ii) An unsaturated vapour does not coexist with any liquid but a saturated vapour does. (iii) The pressure exerted by an unsaturated vapour increases when the volume is reduced at constant temperature but the pressure exerted by a saturated vapour one that is in contact with own liquid. (b) Segment DC of the line on Fig. 8.1 shows that large changes in pressure are required to produce small changes in volume of a liquid, as shown by the large gradient of the	gases.			centralista i sato ide disc	
(e) Scientists investigating the behaviour of gases first used atmospheric air. As a result of their investigations, the gas laws were developed. (i) State the ideal gas equation. (ii) By reference to Figs 8.2 and 8.3, suggest why 1. it was fortunate for the early investigators of gas laws that atmospheric air is composed mainly of nitrogen and oxygen. 2. when verifying the gas laws in a school laboratory, water vapour should be removed from the sample of air. [5] Suggested Solution: (a) (i) 1. 'An isothermal change' refers to a change that takes place under constant temperature. 2. 'The vapour condenses' refers to the phenomenon where the water undergoes a change of state from the gaseous to the liquid state. (ii) An unsaturated vapour does not coexist with any liquid but a saturated vapour does. (iii) The pressure exerted by an unsaturated vapour increases when the volume is reduced at constant temperature but the pressure exerted by a saturated vapour one that is in contact with own liquid. (b) Segment DC of the line on Fig. 8.1 shows that large changes in pressure are required to produce small changes in volume of a liquid, as shown by the large gradient of the	useful in	early experimental work or	ance listed in Fig. 8.3 prov the behaviour of a vapo	ed to be most our near to its	
 (i) State the ideal gas equation. (ii) By reference to Figs 8.2 and 8.3, suggest why 1. it was fortunate for the early investigators of gas laws that atmospheric air is composed mainly of nitrogen and oxygen. 2. when verifying the gas laws in a school laboratory, water vapour should be removed from the sample of air. [5] [D99/O2/Q8] Suggested Solution: (a) (i) 1. 'An isothermal change' refers to a change that takes place under constant temperature. 2. 'The vapour condenses' refers to the phenomenon where the water undergoes a change of state from the gaseous to the liquid state. (ii) An unsaturated vapour does not coexist with any liquid but a saturated vapour does. (iii) The pressure exerted by an unsaturated vapour increases when the volume is reduced at constant temperature but the pressure exerted by a saturated vapour one that is in contact with own liquid. (b) Segment DC of the line on Fig. 8.1 shows that large changes in pressure are required to produce small changes in volume of a liquid, as shown by the large gradient of the 	(e) Scientists inve	stigating the behaviour of ga	ses first used atmospheric developed.	air. As a result	
 (ii) By reference to Figs 8.2 and 8.3, suggest why 1. it was fortunate for the early investigators of gas laws that atmospheric air is composed mainly of nitrogen and oxygen. 2. when verifying the gas laws in a school laboratory, water vapour should be removed from the sample of air. [5] Suggested Solution: (a) (i) 1. 'An isothermal change' refers to a change that takes place under constant temperature. 2. 'The vapour condenses' refers to the phenomenon where the water undergoes a change of state from the gaseous to the liquid state. (ii) An unsaturated vapour does not coexist with any liquid but a saturated vapour does. (iii) The pressure exerted by an unsaturated vapour increases when the volume is reduced at constant temperature but the pressure exerted by a saturated vapour one that is in contact with own liquid. (b) Segment DC of the line on Fig. 8.1 shows that large changes in pressure are required to produce small changes in volume of a liquid, as shown by the large gradient of the 				f f 81 1	
1. it was fortunate for the early investigators of gas laws that atmospheric air is composed mainly of nitrogen and oxygen. 2. when verifying the gas laws in a school laboratory, water vapour should be removed from the sample of air. [D99/O2/Q8] Suggested Solution: (a) (i) 1. 'An isothermal change' refers to a change that takes place under constant temperature. 2. 'The vapour condenses' refers to the phenomenon where the water undergoes a change of state from the gaseous to the liquid state. (ii) An unsaturated vapour does not coexist with any liquid but a saturated vapour does. (iii) The pressure exerted by an unsaturated vapour increases when the volume is reduced at constant temperature but the pressure exerted by a saturated vapour one that is in contact with own liquid. (b) Segment DC of the line on Fig. 8.1 shows that large changes in pressure are required to produce small changes in volume of a liquid, as shown by the large gradient of the			ugaest why	月期日日	
2. when verifying the gas laws in a school laboratory, water vapour should be removed from the sample of air. [5] [D99/O2/O8] Suggested Solution: (a) (i) 1. 'An isothermal change' refers to a change that takes place under constant temperature. 2. 'The vapour condenses' refers to the phenomenon where the water undergoes a change of state from the gaseous to the liquid state. (ii) An unsaturated vapour does not coexist with any liquid but a saturated vapour does. (iii) The pressure exerted by an unsaturated vapour increases when the volume is reduced at constant temperature but the pressure exerted by a saturated vapour one that is in contact with own liquid. (b) Segment DC of the line on Fig. 8.1 shows that large changes in pressure are required to produce small changes in volume of a liquid, as shown by the large gradient of the	1. it wa	s fortunate for the early inv	restigators of gas laws that	at atmospheric	
Suggested Solution: (a) (i) 1. 'An isothermal change' refers to a change that takes place under constant temperature. 2. 'The vapour condenses' refers to the phenomenon where the water undergoes a change of state from the gaseous to the liquid state. (ii) An unsaturated vapour does not coexist with any liquid but a saturated vapour does. (iii) The pressure exerted by an unsaturated vapour increases when the volume is reduced at constant temperature but the pressure exerted by a saturated vapour remains constant when the volume is reduced at constant temperature. (b) Segment DC of the line on Fig. 8.1 shows that large changes in pressure are required to produce small changes in volume of a liquid, as shown by the large gradient of the	2. wher	verifying the gas laws in a	school laboratory, water	vapour should	
Suggested Solution: (a) (i) 1. 'An isothermal change' refers to a change that takes place under constant temperature. 2. 'The vapour condenses' refers to the phenomenon where the water undergoes a change of state from the gaseous to the liquid state. (ii) An unsaturated vapour does not coexist with any liquid but a saturated vapour does. (iii) The pressure exerted by an unsaturated vapour increases when the volume is reduced at constant temperature but the pressure exerted by a saturated vapour remains constant when the volume is reduced at constant temperature. (b) Segment DC of the line on Fig. 8.1 shows that large changes in pressure are required to produce small changes in volume of a liquid, as shown by the large gradient of the	De re	emoved from the sample of	all.		
 (a) (i) 1. 'An isothermal change' refers to a change that takes place under constant temperature. 2. 'The vapour condenses' refers to the phenomenon where the water undergoes a change of state from the gaseous to the liquid state. (ii) An unsaturated vapour does not coexist with any liquid but a saturated vapour does. (iii) The pressure exerted by an unsaturated vapour increases when the volume is reduced at constant temperature but the pressure exerted by a saturated vapour remains constant when the volume is reduced at constant temperature. (b) Segment DC of the line on Fig. 8.1 shows that large changes in pressure are required to produce small changes in volume of a liquid, as shown by the large gradient of the 				[200,02,03]	
 (a) (i) 1. 'An isothermal change' refers to a change that takes place under constant temperature. 2. 'The vapour condenses' refers to the phenomenon where the water undergoes a change of state from the gaseous to the liquid state. (ii) An unsaturated vapour does not coexist with any liquid but a saturated vapour does. (iii) The pressure exerted by an unsaturated vapour increases when the volume is reduced at constant temperature but the pressure exerted by a saturated vapour remains constant when the volume is reduced at constant temperature. (b) Segment DC of the line on Fig. 8.1 shows that large changes in pressure are required to produce small changes in volume of a liquid, as shown by the large gradient of the 	Suggested Solu	tion:			
 2. 'The vapour condenses' refers to the phenomenon where the water undergoes a change of state from the gaseous to the liquid state. (ii) An unsaturated vapour does not coexist with any liquid but a saturated vapour does. (iii) The pressure exerted by an unsaturated vapour increases when the volume is reduced at constant temperature but the pressure exerted by a saturated vapour remains constant when the volume is reduced at constant temperature. (b) Segment DC of the line on Fig. 8.1 shows that large changes in pressure are required to produce small changes in volume of a liquid, as shown by the large gradient of the 	(a) (i) 1. 'An iso	othermal change' refers to	a change that takes place	under constant	
 (ii) An unsaturated vapour does not coexist with any liquid but a saturated vapour does. (iii) The pressure exerted by an unsaturated vapour increases when the volume is reduced at constant temperature but the pressure exerted by a saturated vapour remains constant when the volume is reduced at constant temperature. (b) Segment DC of the line on Fig. 8.1 shows that large changes in pressure are required to produce small changes in volume of a liquid, as shown by the large gradient of the 	2 'The v	anour condenses' refers to	the phenomenon where t	he water under-	
 (iii) The pressure exerted by an unsaturated vapour increases when the volume is reduced at constant temperature but the pressure exerted by a saturated vapour remains constant when the volume is reduced at constant temperature. (b) Segment DC of the line on Fig. 8.1 shows that large changes in pressure are required to produce small changes in volume of a liquid, as shown by the large gradient of the 					(a) (ii) A saturated vapour
reduced at constant temperature but the pressure exerted by a saturated vapour remains constant when the volume is reduced at constant temperature. (b) Segment DC of the line on Fig. 8.1 shows that large changes in pressure are required to produce small changes in volume of a liquid, as shown by the large gradient of the					one that is in contact with i
to produce small changes in volume of a liquid, as shown by the large gradient of the	reduced at remains of	constant temperature but to constant when the volume is	reduced at constant tem	perature.	own liquid.
	to produce sma	the line on Fig. 8.1 shows all changes in volume of a li	that large changes in press quid, as shown by the larg	sure are required e gradient of the	

(c) substance T _c / K hydrogen 33	learning CORNER
A South Specific Co. S. A. hesses annuise for	0
hydrogen 33	(c) The isotherm for 374 °C does
	not show an extended pla
nitrogen 126	teau but shows a point o
oxygen 154	inflection. This shows that
carbon dioxide 304	the critical temperature o water is 374 °C. The tem
ammonia 406	perature in Kelvin is
sulphur dioxide 431	374 + 273.15 = 647 K
water 647	(correct to 3 S.F.
scope of 15 K-Diction De que may re-	pressure
(d) (i) Carbon dioxide	inflection showing
Ammonia	critical point
Sulphur dioxide, water	374 °C volume
(ii) Carbon dioxide could be the most useful substance in e	early experimental work on
the behaviour of a vapour near to its critical point. Its cri	tunical point is just less than
10 K above typical room temperature which may be ob ammonia, for instance, have critical temperatures that	t are very far from typical 273.15 + 25 = 298 K.
room temperatures which means that much energy is	s needed to cool the gas In order to produce liquid by
down (in the case of oxygen) or to heat up the gas (in	
order to bring the gas to its critical temperature.	the vapour must be below it critical temperature. Perma
(e) (i) $pV = nRT$	nent gases are those that
where P: pressure exerted by gas.	could not be liquefied at room
V: volume occupied by gas.	temperature by pressure alone. This means that per
n: number of moles of gas.	manent gases could be those
R: molar gas constant.	that have critical tempera
T: temperature.	tures above room tempera ture (~298 K).
(ii) 1. From Fig. 8.2, it may be seen that the ideal gas eqi eratures that are much higher than the critical telexample, the isotherms for temperatures above 7 constant) as seen in the shape of the isotherms.	mperature of the gas. For ments on carbon dioxide i
From Fig. 8.3, it may be seen that nitrogen and oxy tures that are much lower than typical room temper of gas laws experiment with temperature ranges at these temperatures, nitrogen and oxygen, bein higher than their critical temperatures, act as ideal made it easier for early investigators using atmosideal gas equation from their results.	ratures. Early investigators around room temperature. ng at temperatures much I gases. These might have
 From Fig. 8.3, it may be seen that water vapour n sing pressure alone at room temperatures. If wat from the sample of air used to verify gas laws, the be liquefied when large pressures are applied. Fro that the ideal gas equation does not hold where va- form coexist. 	ter vapour is not removed water vapour present will om Fig. 8.2, it may be seen
Question 4	
(a) Define the term density.	teriod of 2 513 to disp[1] to whomely exist (i) (ii)
(b) Outline how molecular movement causes the pressure of	exerted by a gas. [2]
(c) One mole of oxygen has a mass of 32 g. Assuming oxygen gas, calculate	
(i) the volume occupied by one mole of oxygen gas wh	en at temperature 273 K
and pressure 1.01 × 10 ⁵ Pa.	am tledt tuods attadiv X VI ta negvan ni
(ii) the density of oxygen gas at this temperature and	pressure. [5] I

(d) (i) Explain what is meant by the root-mean-square speed √c c² > of gas molecules. (ii) Caclulate the root-mean-square speed of four molecules travelling with speeds 300 ms¹ , 400 ms¹ , 500 ms¹ and 600 ms¹ . [4] (e) Assuming ideal gas behaviour, calculate for oxygen at 273 K (i) the root-mean-square speed of its molecules. (ii) the average kinetic energy of a molecule. (iii) the average kinetic energy of a molecule. (iv) motion of the molecules, (iii) order in the pattern of molecules, (iv) motion of the molecules. (iv) motion of the molecules in constant and random motion. As the molecules bombard against the walls of the container containing the gas, the molecules exert force on the container walls. The force exerted per unit area of the container walls is the pressure exerted by the gas. (c) (i) pV = nRT v = nRT = 1 × 8.31 × 273 = 2.25 × 10⁻2 m³ (iii) P = √(-32 × 10⁻3) = 1.42 kgm³ (iv) The root-mean-square speed of gas molecules refers to the square root of the average of the squared speeds of the gas molecules. (iv) The molecules are speed of the four molecules = (300² + 400² + 500² + 600²	tonic	11	Ideal Gases Page 6	1	New Y	1,0100
molecules. (II) Calculate the root-mean-square speed of four molecules travelling with speeds 300 ms², 400 ms², 500 ms² and 600 ms². (e) Assuming ideal gas behaviour, calculate for oxygen at 273 K (i) the root-mean-square speed of its molecules. (ii) the average kinetic energy of a molecule. (f) Cxygen has a boiling point of 90 K and a melting point of 55 K. Describe qualitatively how oxygen at 273 K and oxygen at 27 K differ in respect of (i) density, (ii) spacing of the molecules, (iii) order in the pattern of molecules, (iv) motion of the molecules. (iv) motion of the molecules in a gas are in constant and random motion. As the molecules bombard against the walls of the container containing the gas, the molecules exert force on the container walls. The force exerted per unit area of the container walls is the pressure exerted by the gas. (c) (i) pV = nRT V = nRT = 1 × 8.31 × 273 = 2.25 × 10² m³ (ii) P = M = 32 × 10² = 1.42 kgm² (iii) Root-mean-square speed of gas molecules refers to the square root of the average of the squared speeds of the gas molecules. (iv) Root-mean-square speed of the four molecules = √(300² + 400² + 500² + 600² + 40² + 40² + 40² + 500² + 600² + 40² + 40² + 500² + 600² + 40² + 500² + 600² + 40² + 500² + 60	topic			lear	ning	CORNER
molecules. (II) Calculate the root-mean-square speed of four molecules travelling with speeds 300 ms², 400 ms², 500 ms² and 600 ms². (e) Assuming ideal gas behaviour, calculate for oxygen at 273 K (i) the root-mean-square speed of its molecules. (ii) the average kinetic energy of a molecule. (f) Cxygen has a boiling point of 90 K and a melting point of 55 K. Describe qualitatively how oxygen at 273 K and oxygen at 27 K differ in respect of (i) density, (ii) spacing of the molecules, (iii) order in the pattern of molecules, (iv) motion of the molecules. (iv) motion of the molecules as a gas are in constant and random motion. As the molecules bombard against the walls of the container containing the gas, the molecules exert force on the container walls. The force exerted per unit area of the container walls is the pressure exerted by the gas. (c) (i) pV = nRT V = nRT = 1 × 8.31 × 273 = 2.25 × 10² m³ (ii) P = M = 32 × 10² = 1.42 kgm²³ (iii) Por ideal gas, √c c² > √(38T) = √(36.31)(273) = 461 ms²¹ (iv) The root-mean-square speed of the four molecules = √(300² + 400² + 500² + 600² + 400² + 6	1(4)	(1)	Explain what is meant by the root-mean-square speed $\sqrt{\langle c^2 \rangle}$ of gas		Para Maria	
 (e) Assuming ideal gas behaviour, calculate for oxygen at 273 K (i) the root-mean-square speed of its molecules. (ii) the average kinetic energy of a molecule. (f) Oxygen has a boiling point of 90 K and a melting point of 55 K. Describe qualitatively how oxygen at 273 K and oxygen at 27 K differ in respect of (i) density. (ii) ofensity. (iii) order in the pattern of molecules, (iii) order in the pattern of molecules, (iv) motion of the molecules. (a) The tern' idensity' refers to the mass per unit volume. (b) The molecules in a gas are in constant and random motion. As the molecules bombard against the walls of the container containing the gas, the molecules exert force on the container walls. The force exerted per unit area of the container walls is the pressure exerted by the gas. (c) (i) pV = nRT V = nRT V = nRT V = nRT V = nRT = 1 × 8.31 × 273 = 2.25 × 10⁻² m³ (ii) p = M/W = 32 × 10⁻³ = 1.42 kgm⁻³ (d) (i) The root-mean-square speed of gas molecules refers to the square root of the average of the squared speeds of the gas molecules. (ii) Root-mean-square speed of the four molecules = √300° +400° +500° +600° and the average of the squared speeds of the gas molecules. (iii) Average kinetic energy of a molecule = 3/2 kT = 3/2 (1.38 × 10⁻²³)(273) = 5.65 × 10⁻²¹ J (iii) Average kinetic energy of a molecule in oxygen at 273 K is greater than that in oxygen is 90 K, it is in gaseous state 273 K. it is not it in solid stat 27 K. (iii) There is no fixed order in the pattern of molecules in oxygen at 273 K but the molecules in oxygen at 273 K are in constant random motion but the molecules in oxygen at 273 K are in constant random motion but the molecules in oxygen at 275 K are in constant random motion but the molecules in oxygen at 275 K are in constant random motion but the molecules in oxygen at 275 K are in constant random motion but the molecules in oxygen at 275 K are in constant ran	(u)		molecules.			
 (e) Assuming ideal gas behaviour, calculate for oxygen at 273 K (i) the root-mean-square speed of its molecules. (ii) the average kinetic energy of a molecule. (f) Oxygen has a boiling point of 90 K and a melting point of 55 K. Describe qualitatively how oxygen at 273 K and oxygen at 27 K differ in respect of (i) density. (ii) ofensity. (iii) order in the pattern of molecules, (iii) order in the pattern of molecules, (iv) motion of the molecules. (a) The tern' idensity' refers to the mass per unit volume. (b) The molecules in a gas are in constant and random motion. As the molecules bombard against the walls of the container containing the gas, the molecules exert force on the container walls. The force exerted per unit area of the container walls is the pressure exerted by the gas. (c) (i) pV = nRT V = nRT V = nRT V = nRT V = nRT = 1 × 8.31 × 273 = 2.25 × 10⁻² m³ (ii) p = M/W = 32 × 10⁻³ = 1.42 kgm⁻³ (d) (i) The root-mean-square speed of gas molecules refers to the square root of the average of the squared speeds of the gas molecules. (ii) Root-mean-square speed of the four molecules = √300° +400° +500° +600° and the average of the squared speeds of the gas molecules. (iii) Average kinetic energy of a molecule = 3/2 kT = 3/2 (1.38 × 10⁻²³)(273) = 5.65 × 10⁻²¹ J (iii) Average kinetic energy of a molecule in oxygen at 273 K is greater than that in oxygen is 90 K, it is in gaseous state 273 K. it is not it in solid stat 27 K. (iii) There is no fixed order in the pattern of molecules in oxygen at 273 K but the molecules in oxygen at 273 K are in constant random motion but the molecules in oxygen at 273 K are in constant random motion but the molecules in oxygen at 275 K are in constant random motion but the molecules in oxygen at 275 K are in constant random motion but the molecules in oxygen at 275 K are in constant random motion but the molecules in oxygen at 275 K are in constant ran	a point	(ii)	Calculate the root-mean-square speed of four molecules travelling with speeds			
 (i) the root-mean-square speed of its molecules. (ii) the average kinetic energy of a molecule. (iii) Oxygen has a boiling point of 90 K and a melting point of 55 K. Describe qualitatively how oxygen at 273 K and oxygen at 27 K differ in respect of (i) density, (ii) spacing of the molecules, (iii) order in the pattern of molecules, (iv) motion of the molecules. [4] [1] Suggested Solution: (a) The term 'density' refers to the mass per unit volume. (b) The molecules in a gas are in constant and random motion. As the molecules bombard against the walls of the container containing the gas, the molecules exert force on the container walls. The force exerted per unit area of the container walls is the pressure exerted by the gas. (c) (i) pV = nRT	er utmis		300 ms ⁻¹ , 400 ms ⁻¹ , 500 ms ⁻¹ and 600 ms ⁻¹ .			
 (ii) the average kinetic energy of a molecule. [4] (f) Oxygen has a boiling point of 90 K and a melting point of 55 K. Describe qualitatively how oxygen at 273 K and oxygen at 27 K differ in respect of (i) density, (ii) spacing of the molecules, (iii) order in the pattern of molecules, (iv) motion of the molecules. [4] Suggested Solution: (a) The term 'density' refers to the mass per unit volume. (b) The molecules in a gas are in constant and random motion. As the molecules bombard against the walls of the container containing the gas, the molecules exert force on the container walls. The force exerted per unit area of the container walls is the pressure exerted by the gas. (c) (i) pV = nRT V = \frac{DMT}{P} = \frac{1 \times 3.31 \times 273}{1.01 \times 10^2} = 2.25 \times 10^{-2} \text{ m}^3 (ii) p = \frac{M}{V} = \frac{32 \times 10^{-3}}{2.25 \times 10^{-2}} = 1.42 \text{ kgm}^{-3} (iii) P = \frac{M}{V} = \frac{32 \times 10^{-3}}{2.25 \times 10^{-2}} = 1.42 \text{ kgm}^{-3} (iv) The root-mean-square speed of gas molecules refers to the square root of the average of the squared speeds of the gas molecules. (iv) Root-mean-square speed of the four molecules = \sqrt{\frac{900^2 + 400^2 + 500^2 + 600^2}{4}} = 464 \text{ ms}^{-1} (iv) Average kinetic energy of a molecule = \frac{2}{2}kT = \frac{2}{2}(1.38 \times 10^{-23})(273) = 5.65 \times 10^{-21} J (ii) Average kinetic energy of a molecules in oxygen at 273 K is greater than that in oxygen is 90 K, it is in gaseous state at 274 K. (iii) There is no fixed order in the pattern of molecules in oxygen at 273 K but the molecules in oxygen at 277 K are ordered in a particular pattern. (iv) The molecules in oxygen at 277 K are ordered in a particular pattern. (iv) The molecules in oxygen at 273 K are in constant random motion but the molecules in oxygen at 277 K vibrate about their mean positions. 	(e)	Assi	uming ideal gas behaviour, calculate for oxygen at 273 K			
 (ii) the average kinetic energy of a minecure of the sum of the average of the square speed of the squared speeds of the squared speeds of the squared speeds of the square root of the average of the squared speeds of the squared spe	718					
 (i) density, (ii) spacing of the molecules, (iii) order in the pattern of molecules, (iii) order in the pattern of molecules, (iv) motion of the molecules. [4] [Ds9/P3/Q4] Suggested Solution: (a) The term 'density' refers to the mass per unit volume. (b) The molecules in a gas are in constant and random motion. As the molecules bombard against the walls of the container containing the gas, the molecules exert force on the container walls. The force exerted per unit area of the container walls is the pressure exerted by the gas. (c) (i) pV = nRT		(ii)	the average kinetic energy of a molecule.			
 (ii) spacing of the molecules, (iii) order in the pattern of molecules, (iv) motion of the molecules. [4] [1999/P3/Q4] Suggested Solution: (a) The term 'density' refers to the mass per unit volume. (b) The molecules in a gas are in constant and random motion. As the molecules bombard against the walls of the container containing the gas, the molecules exert force on the container walls. The force exerted per unit area of the container walls is the pressure exerted by the gas. (c) (i) pV = nRT	(f)	Oxy	gen has a boiling point of 90 K and a meitting point of 35 K. December quantities oxygen at 273 K and oxygen at 27 K differ in respect of			
(iii) order in the pattern of molecules, (iv) motion of the molecules. [4] Suggested Solution: (a) The term 'density' refers to the mass per unit volume. (b) The molecules in a gas are in constant and random motion. As the molecules bombard against the walls of the container containing the gas, the molecules exert force on the container walls. The force exerted per unit area of the container walls is the pressure exerted by the gas. (c) (i) $PV = RRT$ $V = \frac{RRT}{P} = \frac{1 \times 8.31 \times 273}{1.01 \times 10^5} = 2.25 \times 10^{-2} \text{ m}^3$ (ii) $P = \frac{M}{V} = \frac{32 \times 10^{-3}}{2.25 \times 10^{-2}} = 1.42 \text{ kgm}^{-3}$ (d) (i) The root-mean-square speed of gas molecules refers to the square root of the average of the squared speeds of the gas molecules. (ii) Root-mean-square speed of the four molecules = $\sqrt{\frac{300^2 + 400^2 + 500^2 + 600^2}{4}} = 464 \text{ ms}^{-1}$ (ii) Average kinetic energy of a molecule = $\frac{3}{2}kT$ $= \frac{3}{2}(1.38 \times 10^{-23})(273) = 5.65 \times 10^{-21} \text{ J}$ (f) (i) The density of oxygen at 273 K is lower than the density of oxygen at 27 K. (iii) The spacing of the molecules in oxygen at 273 K is greater than that in oxygen at 27 K. (iii) The processes of fixed order in the pattern of molecules in oxygen at 273 K but the molecules in oxygen at 27 K are ordered in a particular pattern. (iv) The molecules in oxygen at 274 K are ordered in a particular pattern. (iv) The molecules in oxygen at 275 K are in constant random motion but the molecules in oxygen at 27 K vibrate about their mean positions.						
 (iv) motion of the molecules. [4] [D99/P3/Q4] Suggested Solution: (a) The term 'density' refers to the mass per unit volume. (b) The molecules in a gas are in constant and random motion. As the molecules bombard against the walls of the container containing the gas, the molecules exert force on the container walls. The force exerted per unit area of the container walls is the pressure exerted by the gas. (c) (i) pV = nRT V = nRT (ii) The root-mean-square speed of gas molecules refers to the square root of the average of the squared speeds of the gas molecules. (ii) Root-mean-square speed of the four molecules = √(300² + 400² + 500² + 600² + 600² + 64 ms⁻¹) (b) (i) For ideal gas, √(c²) = √(3RT) - √(3(8.3)(273)) = 461 ms⁻¹ (ii) Average kinetic energy of a molecule = (3/2)kT = (1/3)(1.38 × 10⁻²²)(273) = 5.65 × 10⁻²¹ J (ii) The density of oxygen at 273 K is lower than the density of oxygen at 27 K. (iii) The spacing of the molecules in oxygen at 273 K is greater than that in oxygen at 27 K. (iii) There is no fixed order in the pattern of molecules in oxygen at 273 K but the molecules in oxygen at 27 K are ordered in a particular pattern. (iv) The molecules in oxygen at 273 K are in constant random motion but the molecules in oxygen at 27 K vibrate about their mean positions. (iv) The molecules in oxygen at 27 K vibrate about their mean positions. 						
Suggested Solution: (a) The term 'density' refers to the mass per unit volume. (b) The molecules in a gas are in constant and random motion. As the molecules bombard against the walls of the container containing the gas, the molecules exert force on the container walls. The force exerted per unit area of the container walls is the pressure exerted by the gas. (c) (i) $pV = nRT$ $V = \frac{nRT}{p} = \frac{1 \times 8.31 \times 273}{1.01 \times 10^5} = 2.25 \times 10^{-2} \text{ m}^3$ (ii) $P = \frac{M}{V} = \frac{32 \times 10^{-3}}{2.25 \times 10^{-2}} = 1.42 \text{ kgm}^{-3}$ (d) (i) The root-mean-square speed of gas molecules refers to the square root of the average of the squared speeds of the gas molecules. (ii) Root-mean-square speed of the four molecules = $\sqrt{\frac{300^2 + 400^2 + 500^2 + 600^2}{4}} = 464 \text{ ms}^{-1}$ (e) (i) For ideal gas, $\sqrt{< c^2} > = \sqrt{\frac{3RT}{M}} = \sqrt{\frac{3(8.31)(273)}{32 \times 10^{-3}}} = 461 \text{ ms}^{-1}$ (ii) Average kinetic energy of a molecule = $\frac{3}{2}kT$ $= \frac{3}{2}(1.38 \times 10^{-23})(273) = 5.65 \times 10^{-21} \text{ J}$ (f) (i) The density of oxygen at 273 K is lower than the density of oxygen at 27 K. (iii) There is no fixed order in the pattern of molecules in oxygen at 273 K but the molecules in oxygen at 274 K are ordered in a particular pattern. (iv) The molecules in oxygen at 275 K are in constant random motion but the molecules in oxygen at 27 K vibrate about their mean positions.	20					
 Suggested Solution: (a) The term 'density' refers to the mass per unit volume. (b) The molecules in a gas are in constant and random motion. As the molecules bombard against the walls of the container containing the gas, the molecules exert force on the container walls. The force exerted per unit area of the container walls is the pressure exerted by the gas. (c) (i) PV = nRT	1	(iv)	motion of the molecules.			
 (a) The term 'density' refers to the mass per unit volume. (b) The molecules in a gas are in constant and random motion. As the molecules bombard against the walls of the container containing the gas, the molecules exert force on the container walls. The force exerted per unit area of the container walls is the pressure exerted by the gas. (c) (i) pV = nRT			[[039][73][4]]			
 (a) The term 'density' refers to the mass per unit volume. (b) The molecules in a gas are in constant and random motion. As the molecules bombard against the walls of the container containing the gas, the molecules exert force on the container walls. The force exerted per unit area of the container walls is the pressure exerted by the gas. (c) (i) pV = nRT			व्यक्तिका व्यक्तिकार विकास करें भी उस्त हुन विकास विकास स्थापन			
 (b) The molecules in a gas are in constant and random motion. As the molecules bombard against the walls of the container containing the gas, the molecules exert force on the container walls. The force exerted per unit area of the container walls is the pressure exerted by the gas. (c) (i) pV = nRT	Su	gges	ted Solution:			
against the walls of the container containing the gas, the motion of the container walls. The force exerted per unit area of the container walls is the pressure exerted by the gas. (c) (i) $pV = nRT$ $V = \frac{nRT}{p} = \frac{1 \times 8.31 \times 273}{1.01 \times 10^5} = 2.25 \times 10^{-2} \text{ m}^3$ (ii) $P = \frac{W}{V} = \frac{32 \times 10^{-3}}{2.25 \times 10^{-2}} = 1.42 \text{ kgm}^{-3}$ (d) (i) The root-mean-square speed of gas molecules refers to the square root of the average of the squared speeds of the gas molecules. (ii) Root-mean-square speed of the four molecules = $\sqrt{\frac{300^2 + 400^2 + 500^2 + 600^2}{4}} = 464 \text{ ms}^{-1}$ (e) (i) For ideal gas, $\sqrt{\langle c^2 \rangle} = \sqrt{\frac{3RT}{M}} = \sqrt{\frac{3(8.31)(273)}{32 \times 10^{-3}}} = 461 \text{ ms}^{-1}$ (ii) Average kinetic energy of a molecule = $\frac{3}{2}kT$ = $\frac{3}{2}(1.38 \times 10^{-23})(273) = 5.65 \times 10^{-21} \text{ J}$ (f) (i) The density of oxygen at 273 K is lower than the density of oxygen at 27 K. (iii) The spacing of the molecules in oxygen at 273 K is greater than that in oxygen at 27 K. (iii) The root-mean-square speed of the four molecules in oxygen at 273 K but the molecules in oxygen at 273 K are in constant random motion but the molecules in oxygen at 27 K vibrate about their mean positions.	(a)	The	term 'density' refers to the mass per unit volume.			49 (6)
The force exerted per unit area of the container walls is the pressure exerted by the gas. (c) (i) $pV = nRT$ $V = \frac{nRT}{p} = \frac{1 \times 8.31 \times 273}{1.01 \times 10^5} = 2.25 \times 10^{-2} \text{ m}^3$ (ii) $p = \frac{W}{V} = \frac{32 \times 10^{-3}}{2.25 \times 10^{-2}} = 1.42 \text{ kgm}^{-3}$ (d) (i) The root-mean-square speed of gas molecules refers to the square root of the average of the squared speeds of the gas molecules. (ii) Root-mean-square speed of the four molecules = $\sqrt{\frac{300^2 + 400^2 + 500^2 + 600^2}{4}}$ $= 464 \text{ ms}^{-1}$ (e) (i) For ideal gas, $\sqrt{\langle c^2 \rangle} = \sqrt{\frac{3RT}{M}} = \sqrt{\frac{3(8.31)(273)}{32 \times 10^{-3}}} = 461 \text{ ms}^{-1}$ (ii) Average kinetic energy of a molecule = $\frac{3}{2}kT$ $= \frac{3}{2}(1.38 \times 10^{-23})(273) = 5.65 \times 10^{-21} \text{ J}$ (f) (i) The density of oxygen at 273 K is lower than the density of oxygen at 27 K. (iii) There is no fixed order in the pattern of molecules in oxygen at 273 K but the molecules in oxygen at 27 K are in constant random motion but the molecules in oxygen at 27 K vibrate about their mean positions.	(b)	agai	nst the walls of the container containing the gas, the motors are			
 (c) (i) pV = nRT		The	force exerted per unit area of the container walls is the pressure exerted by the			
 V = nRT / P = 1 × 8.31 × 273 = 2.25 × 10⁻² m³ (ii) P = W / 2.25 × 10⁻³ = 1.42 kgm⁻³ (d) (i) The root-mean-square speed of gas molecules refers to the square root of the average of the squared speeds of the gas molecules. (ii) Root-mean-square speed of the four molecules = √(300² + 400² + 500² + 600² / 4 = 464 ms⁻¹ (e) (i) For ideal gas, √(c²) = √(3RT) / M = √(3(8.31)(273) / 32×10⁻³) = 461 ms⁻¹ (ii) Average kinetic energy of a molecule = 3/2 kT = 3/2 (1.38 × 10⁻²³)(273) = 5.65 × 10⁻²¹ J (f) (i) The density of oxygen at 273 K is lower than the density of oxygen at 27 K. (ii) The spacing of the molecules in oxygen at 273 K is greater than that in oxygen at 27 K. (iii) There is no fixed order in the pattern of molecules in oxygen at 273 K but the molecules in oxygen at 27 K are ordered in a particular pattern. (iv) The molecules in oxygen at 273 K are in constant random motion but the molecules in oxygen at 27 K vibrate about their mean positions. 						
 V = nRT / p = 1x 8.31 x 273 = 2.25 x 10⁻² m³ (ii) P = W / 2 32 x 10⁻³ = 1.42 kgm⁻³ (d) (i) The root-mean-square speed of gas molecules refers to the square root of the average of the squared speeds of the gas molecules. (ii) Root-mean-square speed of the four molecules = √(300² + 400² + 500² + 600²)/4 = 464 ms⁻¹ (e) (i) For ideal gas, √(c²) = √(3RT)/M = √(3(8.31)(273)/(32x10⁻³) = 461 ms⁻¹ (ii) Average kinetic energy of a molecule = 3/2 kT = 3/2(1.38 x 10⁻²³)(273) = 5.65 x 10⁻²¹ J (f) (i) The density of oxygen at 273 K is lower than the density of oxygen at 27 K. (ii) The spacing of the molecules in oxygen at 273 K is greater than that in oxygen at 27 K. (iii) There is no fixed order in the pattern of molecules in oxygen at 273 K but the molecules in oxygen at 27 K are ordered in a particular pattern. (iv) The molecules in oxygen at 273 K are in constant random motion but the molecules in oxygen at 27 K. vibrate about their mean positions. 	(c)	(i)	pV = nRT			
 (ii) p = M/V = 32 × 10⁻³/2.25 × 10⁻² = 1.42 kgm⁻³ (d) (i) The root-mean-square speed of gas molecules refers to the square root of the average of the squared speeds of the gas molecules. (ii) Root-mean-square speed of the four molecules = √(300² + 400² + 500² + 600²)/4 = 464 ms⁻¹ (e) (i) For ideal gas,	(0)	1,	$V = \frac{nRT}{R} = \frac{1 \times 8.31 \times 273}{4.24 \times 10^5} = 2.25 \times 10^{-2} \text{ m}^3$			1896
 (d) (i) The root-mean-square speed of gas molecules refers to the square root of the average of the squared speeds of the gas molecules. (ii) Root-mean-square speed of the four molecules = √(300² + 400² + 500² + 600²)/4 = 464 ms⁻¹ (e) (i) For ideal gas, √(c²) = √(38.31)(273)/(32×10⁻³) = 461 ms⁻¹ (ii) Average kinetic energy of a molecule = 3/2 kT = 3/2 (1.38 × 10⁻²³)(273) = 5.65 × 10⁻²¹ J (f) The density of oxygen at 273 K is lower than the density of oxygen at 27 K. (ii) The spacing of the molecules in oxygen at 273 K is greater than that in oxygen at 27 K. (iii) There is no fixed order in the pattern of molecules in oxygen at 273 K but the molecules in oxygen at 27 K are ordered in a particular pattern. (iv) The molecules in oxygen at 273 K are in constant random motion but the molecules in oxygen at 27 K vibrate about their mean positions. 			The state of the s			
 (d) (i) The root-mean-square speed of gas molecules refers to the square root of the average of the squared speeds of the gas molecules. (ii) Root-mean-square speed of the four molecules = √(300² + 400² + 500² + 600²)/4 = 464 ms⁻¹ (e) (i) For ideal gas, √(c²) = √(38.31)(273)/(32×10⁻³) = 461 ms⁻¹ (ii) Average kinetic energy of a molecule = 3/2 kT = 3/2 (1.38 × 10⁻²³)(273) = 5.65 × 10⁻²¹ J (f) The density of oxygen at 273 K is lower than the density of oxygen at 27 K. (ii) The spacing of the molecules in oxygen at 273 K is greater than that in oxygen at 27 K. (iii) There is no fixed order in the pattern of molecules in oxygen at 273 K but the molecules in oxygen at 27 K are ordered in a particular pattern. (iv) The molecules in oxygen at 273 K are in constant random motion but the molecules in oxygen at 27 K vibrate about their mean positions. 		(ii)	$p = \frac{M}{V} = \frac{32 \times 10^{-3}}{2.25 \times 10^{-2}} = 1.42 \text{ kgm}^{-3}$			
 (ii) Root-mean-square speed of the four molecules = √300² + 400² + 500² + 600² / 4 = 464 ms⁻¹ (ii) For ideal gas, √⟨c²⟩ = √3RT / M = √3(8.31)(273) / 32×10⁻³ = 461 ms⁻¹ (iii) Average kinetic energy of a molecule = 3/2 kT / = 3/2 (1.38×10⁻²³)(273) = 5.65×10⁻²¹ J (i) The density of oxygen at 273 K is lower than the density of oxygen at 27 K. (ii) The spacing of the molecules in oxygen at 273 K is greater than that in oxygen at 27 K. (iii) There is no fixed order in the pattern of molecules in oxygen at 273 K but the molecules in oxygen at 27 K are ordered in a particular pattern. (iv) The molecules in oxygen at 273 K are in constant random motion but the molecules in oxygen at 27 K vibrate about their mean positions. 	(d)		The root-mean-square speed of gas molecules refers to the square root of the	oval as		
 (e) (i) For ideal gas, √cc² > =√(3RT)/M =√(3(8.31)(273))/(32×10-3) = 461 ms⁻¹ (ii) Average kinetic energy of a molecule = 3/2 kT = 3/2 (1.38×10⁻²³)(273) = 5.65×10⁻²¹ J (f) (i) The density of oxygen at 273 K is lower than the density of oxygen at 27 K. (ii) The spacing of the molecules in oxygen at 273 K is greater than that in oxygen at 27 K. (iii) There is no fixed order in the pattern of molecules in oxygen at 273 K but the molecules in oxygen at 27 K are ordered in a particular pattern. (iv) The molecules in oxygen at 273 K are in constant random motion but the molecules in oxygen at 27 K vibrate about their mean positions. 			300° +400° +500° +600°	mez essene Brank ved		
 (e) (i) For ideal gas, √cc² > =√(3RT)/M =√(3(8.31)(273))/(32×10-3) = 461 ms⁻¹ (ii) Average kinetic energy of a molecule = 3/2 kT = 3/2 (1.38×10⁻²³)(273) = 5.65×10⁻²¹ J (f) (i) The density of oxygen at 273 K is lower than the density of oxygen at 27 K. (ii) The spacing of the molecules in oxygen at 273 K is greater than that in oxygen at 27 K. (iii) There is no fixed order in the pattern of molecules in oxygen at 273 K but the molecules in oxygen at 27 K are ordered in a particular pattern. (iv) The molecules in oxygen at 273 K are in constant random motion but the molecules in oxygen at 27 K vibrate about their mean positions. 		(ii)	Root-mean-square speed of the four molecules = $\sqrt{\frac{4}{}}$			
 √⟨ c² ⟩ = √(3/M) = √(3(8.31)(273)/(32×10⁻³) = 461 ms⁻¹ (ii) Average kinetic energy of a molecule = 3/2 kT = 3/2 (1.38×10⁻²³)(273) = 5.65×10⁻²¹ J (f) (i) The density of oxygen at 273 K is lower than the density of oxygen at 27 K. (ii) The spacing of the molecules in oxygen at 273 K is greater than that in oxygen at 27 K. (iii) There is no fixed order in the pattern of molecules in oxygen at 273 K but the molecules in oxygen at 27 K are ordered in a particular pattern. (iv) The molecules in oxygen at 273 K are in constant random motion but the molecules in oxygen at 27 K vibrate about their mean positions. 			= 464 ms ⁻¹			
 √⟨ c² ⟩ = √(3/M) = √(3(8.31)(273)/(32×10⁻³) = 461 ms⁻¹ (ii) Average kinetic energy of a molecule = 3/2 kT = 3/2 (1.38×10⁻²³)(273) = 5.65×10⁻²¹ J (f) (i) The density of oxygen at 273 K is lower than the density of oxygen at 27 K. (ii) The spacing of the molecules in oxygen at 273 K is greater than that in oxygen at 27 K. (iii) There is no fixed order in the pattern of molecules in oxygen at 273 K but the molecules in oxygen at 27 K are ordered in a particular pattern. (iv) The molecules in oxygen at 273 K are in constant random motion but the molecules in oxygen at 27 K vibrate about their mean positions. 	(e) (i)	For ideal gas,			
 (f) (i) The density of oxygen at 273 K is lower than the density of oxygen at 27 K. (ii) The spacing of the molecules in oxygen at 273 K is greater than that in oxygen at 27 K. (iii) There is no fixed order in the pattern of molecules in oxygen at 273 K but the molecules in oxygen at 27 K are ordered in a particular pattern. (iv) The molecules in oxygen at 273 K are in constant random motion but the molecules in oxygen at 27 K vibrate about their mean positions. 						
 (f) (i) The density of oxygen at 273 K is lower than the density of oxygen at 27 K. (ii) The spacing of the molecules in oxygen at 273 K is greater than that in oxygen at 27 K. (iii) There is no fixed order in the pattern of molecules in oxygen at 273 K but the molecules in oxygen at 27 K are ordered in a particular pattern. (iv) The molecules in oxygen at 273 K are in constant random motion but the molecules in oxygen at 27 K vibrate about their mean positions. 			$\frac{3}{4}kT$			
 (f) (i) The density of oxygen at 273 K is lower than the density of oxygen at 27 K. (ii) The spacing of the molecules in oxygen at 273 K is greater than that in oxygen at 27 K. (iii) There is no fixed order in the pattern of molecules in oxygen at 273 K but the molecules in oxygen at 27 K are ordered in a particular pattern. (iv) The molecules in oxygen at 273 K are in constant random motion but the molecules in oxygen at 27 K vibrate about their mean positions. 		(ii)	Average kinetic energy of a molecule 2 3 (4.20 40-23)(273) = 5.65 × 10 ⁻²¹			
 (i) The density of oxygen at 273 K is lower than the density of oxygen at 274 K. (ii) The spacing of the molecules in oxygen at 273 K is greater than that in oxygen at 27 K. (iii) There is no fixed order in the pattern of molecules in oxygen at 273 K but the molecules in oxygen at 27 K are ordered in a particular pattern. (iv) The molecules in oxygen at 273 K are in constant random motion but the molecules in oxygen at 27 K vibrate about their mean positions. 						Lalling salet
 (ii) The spacing of the molecules in oxygen at 273 K is greater than that in oxygen at 27 K. (iii) There is no fixed order in the pattern of molecules in oxygen at 273 K but the molecules in oxygen at 27 K are ordered in a particular pattern. (iv) The molecules in oxygen at 273 K are in constant random motion but the molecules in oxygen at 27 K vibrate about their mean positions. 	/1) (i)	The density of oxygen at 273 K is lower than the density of oxygen at 27 K	nation metals	oxygen is	90 K, it is in
at 27 K. (iii) There is no fixed order in the pattern of molecules in oxygen at 273 K but the molecules in oxygen at 27 K are ordered in a particular pattern. (iv) The molecules in oxygen at 273 K are in constant random motion but the molecules in oxygen at 27 K vibrate about their mean positions.	(1	(11)	The spacing of the molecules in oxygen at 273 K is greater than that in oxygen	en	gaseous st	tate at 273 K. Sin
 (iii) There is no fixed order in the pattern of molecules in oxygen at 27 K but the molecules in oxygen at 27 K are ordered in a particular pattern. (iv) The molecules in oxygen at 273 K are in constant random motion but the molecules in oxygen at 27 K vibrate about their mean positions. 			at 27 K.		is 55 K, it	is in its solid str
in oxygen at 27 K vibrate about their mean positions.			molecules in oxygen at 27 K are ordered in a particular patterns		at 27 K.	
		(iv) The molecules in oxygen at 273 K are in constant random motion but the molecules oxygen at 27 K vibrate about their mean positions.	t orașes		

opic 1	Ideal Gases	Page 7	Learning CORNER
Quest	on 5 ma in	in bas e	S CORNER
BELL A 2	control to	IPa L	
(a) (i	Distinguish between the processes of evaporation and of boiling.	orates	
tothopow	Use the first law of thermodynamics to explain why, when a liquid evapor boils, thermal energy must be supplied to the liquid in order to maconstant temperature.	aintain [6]	$\sqrt{8} \times m_A V n \frac{1}{S}$
(b) T	pressure p of an ideal gas of density ρ is related to the mean-square ρ of its molecules by the expression	speed	
	$p = \frac{1}{3}\rho < c^2 > .$	W 2	
(i	State three basic assumptions of the kinetic theory of gases, which lea model of an <i>ideal</i> gas.	d to a [3]	Hell order
(i	Write down the equation of state for an ideal gas.	[1]	maM (1 (6) (5)
(i	Show that the average kinetic energy of a molecule of an ideal opproportional to the thermodynamic temperature T.	gas is [4]	
'n	te neutrons in the core of a fission reactor are sometimes referred to utron gas'. These free (thermal) neutrons may be assumed to behave as mol- an ideal gas at a temperature of 35 °C.	as a ecules	
	Calculate, for a free neutron of mass 1.67 × 10 ⁻²⁷ kg.	Mayor Par	
(i	Its mean kinetic energy.		
	its root-mean-square (r.m.s.) speed.		
,,	Determine the temperature of helium gas, assumed to be an ideal gas, at	which	
()	helium molecules (each of mass $4u$) would have the same r.m.s. speed free neutrons.	as the [6]	
	[J00/I	P3/Q5]	
(a) (i)	sted Solution: Evaporation occurs at any temperature but boiling occurs only at the boiling		
(ii)	Molecules overcome the attractive forces exerted by surrounding moleculescape from the liquid surface when a liquid evaporates or boils. In so do liquid is actually doing work against the atmosphere. According to the first	oing, the	(a) (ii) First law of thermodynamics:ΔU = Q + W
	thermodynamics, internal energy remains constant when the work dor	ne by a	$\Delta U = 0$ when $Q + W = 0$ $\Rightarrow Q = -W$
	system equals the thermal energy supplied to it. Hence to maintain of temperature (implying constant internal energy), thermal energy must be s	supplied	⇒ Q = -vv This means that the work
	to a liquid which is evaporating or boiling.		done by the liquid while it
(b) (i)	Three basic assumptions:		evaporates or boils (-W) must equal the thermal energy
	A gas consists of particles called molecules.		supplied (Q) in order for tem- perature to be constant since
	2. The molecules are in constant random motion.		internal energy (U) is propor-
	3. The range of intermolecular forces is small compared to the average		tional to temperature.
	ration of the gas molecules such that intermolecular forces are negligi ept during a collision, the duration of a collision is negligible compare	ed to the	(b) (i) Other assumptions:
	time spent in free motion and the volume of the gas molecules is no compared to the volume occupied by the gas.	egligible	 A molecule moves with uniform velocity between collisions.
(ii)	pV = nRT		5. The collisions of the
	where V: volume of the gas		molecules with one another and with the walls are per
	n: number of moles of the gas		fectly elastic on average.
	R: molar gas constant		 Newtonian mechanics can be applied to the molecular
	T: temperature of the gas		lar collisions.

tonia 11	deal Gases Page 8	
topic 11 /	ueai dases	learning CORNE
(iii) D	$=\frac{1}{3}\rho < c^2 > \text{ and } pV = nRT$	
	$\frac{1}{3}\rho < c^2 > \frac{nRT}{V}$	(b) (iii) Mass of gas = Numb of molecules × Mass of o
⇒	3	molecule
	$\frac{1}{3}\frac{M}{V} < c^2 > = \frac{nRT}{V}$ where M: mass of gas	$\Rightarrow M = Nm = nN_A m$
$\frac{1}{3}$	$nN_Am < c^2 >= nRT$ where $m = mass$ of a molecule	where N _A : Avogadro's num
	$m < c^2 > = \frac{3RT}{N_A}$	
_	$\frac{1}{2}m < c^2 > \frac{3}{2}kT \text{where } k : \text{Boltzmann's constant} = \frac{R}{N_A}$	
He	ence the average kinetic energy of a molecule of an ideal gas is proportional the thermodynamic temperature T.	al .
(c) (i) 1.	Mean kinetic energy of a free neutron = $\frac{1}{2}m < c^2 >$	officewood sold (II)
	$=\frac{3kT}{2}$	
	$=\frac{3(1.38\times10^{-23})(273+35)}{2}$	
	$=6.4\times10^{-21}\mathrm{J}$	
	Root-mean-square (r.m.s.) speed = $\sqrt{\langle c^2 \rangle}$	
2.		
	$= \sqrt{\frac{\text{mean kinetic energy} \times 2}{\text{mass of neutron}}}$	
	$=\sqrt{\frac{6.4\times10^{-21}\times2}{1.67\times10^{-27}}}$	
	√ 1.67×10 ⁻²⁷	
(ii) ½	$= 2768.5 \approx 2770 \text{ ms}^{-1} \text{ (3s.f.)}$ $\frac{1}{2}m < c^2 >= \frac{3}{2}kT$ $T = \frac{m < c^2 >}{3k} = \frac{4u < c^2 >}{3k} = \frac{4(1.66 \times 10^{-27})(2768.5^2)}{3(1.38 \times 10^{-23})} = 1229 \text{ K}$	
(ii) ½	$\frac{1}{2}m < c^2 > = \frac{3}{2}kT$	Discussion includes the control of t
(ii) ½	$\frac{1}{2}m < c^2 > = \frac{3}{2}kT$ $T = \frac{m < c^2 >}{3k} = \frac{4u < c^2 >}{3k} = \frac{4(1.66 \times 10^{-27})(2768.5^2)}{3(1.38 \times 10^{-23})} = 1229 \text{ K}$	Specification indicate The controls The co
Question	$\frac{1}{2}m < c^2 > = \frac{3}{2}kT$ $T = \frac{m < c^2 >}{3k} = \frac{4u < c^2 >}{3k} = \frac{4(1.66 \times 10^{-27})(2768.5^2)}{3(1.38 \times 10^{-23})} = 1229 \text{ K}$	time in medical solution and the control of the con
Question (a) (i) (ii)	$\frac{1}{2}m < c^2 >= \frac{3}{2}kT$ $T = \frac{m < c^2 >}{3k} = \frac{4u < c^2 >}{3k} = \frac{4(1.66 \times 10^{-27})(2768.5^2)}{3(1.38 \times 10^{-23})} = 1229 \text{ K}$ $\frac{m}{3} = \frac{6}{3}$ State what is meant by the <i>internal energy</i> of a system. Explain why the internal energy of an ideal gas is proportional to the mean	construction and construction and construction and construction and construction co
Question (a) (i) (ii)	$\frac{1}{2}m < c^2 >= \frac{3}{2}kT$ $T = \frac{m < c^2 >}{3k} = \frac{4u < c^2 >}{3k} = \frac{4(1.66 \times 10^{-27})(2768.5^2)}{3(1.38 \times 10^{-23})} = 1229 \text{ K}$ $\frac{m \ 6}{2}$ State what is meant by the <i>internal energy</i> of a system. Explain why the internal energy of an ideal gas is proportional to the mean square speed $< c^2 >$ of its atoms.	chooken mined anothen sen chooken sen choo
Question (a) (i) (ii)	$\frac{1}{2}m < c^2 >= \frac{3}{2}kT$ $T = \frac{m < c^2 >}{3k} = \frac{4u < c^2 >}{3k} = \frac{4(1.66 \times 10^{-27})(2768.5^2)}{3(1.38 \times 10^{-23})} = 1229 \text{ K}$ $\frac{m 6}{2}$ State what is meant by the <i>internal energy</i> of a system. Explain why the internal energy of an ideal gas is proportional to the mean square speed $< c^2 >$ of its atoms. [4]	consistent and consis
Question (a) (i) (ii) (b) The	$\frac{1}{2}m < c^2 >= \frac{3}{2}kT$ $T = \frac{m < c^2 >}{3k} = \frac{4u < c^2 >}{3k} = \frac{4(1.66 \times 10^{-27})(2768.5^2)}{3(1.38 \times 10^{-23})} = 1229 \text{ K}$ $\frac{m \ 6}{2}$ State what is meant by the <i>internal energy</i> of a system. Explain why the internal energy of an ideal gas is proportional to the mean square speed $< c^2 >$ of its atoms. [4] first law of thermodynamics may be expressed as $\frac{1}{2}$ gain in internal energy = $\frac{1}{2}$ w.	consistent and another sense another sense and another sense
Question (a) (i) (ii) (b) The	$\frac{1}{2}m < c^2 >= \frac{3}{2}kT$ $T = \frac{m < c^2 >}{3k} = \frac{4u < c^2 >}{3k} = \frac{4(1.66 \times 10^{-27})(2768.5^2)}{3(1.38 \times 10^{-23})} = 1229 \text{ K}$ $\frac{m}{3} = \frac{6}{3}$ State what is meant by the <i>internal energy</i> of a system. Explain why the internal energy of an ideal gas is proportional to the mean square speed $< c^2 >$ of its atoms. [4] first law of thermodynamics may be expressed as $gain \ in \ internal \ energy = q + w.$ lain the symbol	condition and condit
Question (a) (i) (ii) (b) The Exp	$\frac{1}{2}m < c^2 >= \frac{3}{2}kT$ $T = \frac{m < c^2 >}{3k} = \frac{4u < c^2 >}{3k} = \frac{4(1.66 \times 10^{-27})(2768.5^2)}{3(1.38 \times 10^{-23})} = 1229 \text{ K}$ $\frac{m}{3} = \frac{6}{3}$ State what is meant by the <i>internal energy</i> of a system. Explain why the internal energy of an ideal gas is proportional to the mean square speed $< c^2 >$ of its atoms. [4] first law of thermodynamics may be expressed as $gain \ in \ internal \ energy = q + w.$ Islain the symbol q ,	Coups malogs (c) outerty syst infinite talogs is of uses asked point (i) (d)
Question (a) (i) (ii) (b) The	$\frac{1}{2}m < c^2 >= \frac{3}{2}kT$ $T = \frac{m < c^2 >}{3k} = \frac{4u < c^2 >}{3k} = \frac{4(1.66 \times 10^{-27})(2768.5^2)}{3(1.38 \times 10^{-23})} = 1229 \text{ K}$ $\frac{m}{3} = \frac{6}{3}$ State what is meant by the <i>internal energy</i> of a system. Explain why the internal energy of an ideal gas is proportional to the mean square speed $< c^2 >$ of its atoms. [4] first law of thermodynamics may be expressed as $gain \ in \ internal \ energy = q + w.$ Islain the symbol q ,	A coupe makeye of a coupe of a coupe of the thought is as the coupe of the coupe of the coupe of the coupe of the coupe of the coupe of the coupe of the coupe of the coupe of the coupe of the coupe of the coupe of the coupe of the coupe of the
Question (a) (i) (ii) (b) The Exp (i) (ii)	$\frac{1}{2}m < c^2 >= \frac{3}{2}kT$ $T = \frac{m < c^2 >}{3k} = \frac{4u < c^2 >}{3k} = \frac{4(1.66 \times 10^{-27})(2768.5^2)}{3(1.38 \times 10^{-23})} = 1229 \text{ K}$ $\frac{m 6}{3k}$ State what is meant by the <i>internal energy</i> of a system. Explain why the internal energy of an ideal gas is proportional to the mean square speed $< c^2 >$ of its atoms. [4] If the symbol of the	A coupe makeye of a coupe of a coupe of the thought is as the coupe of the coupe of the coupe of the coupe of the coupe of the coupe of the coupe of the coupe of the coupe of the coupe of the coupe of the coupe of the coupe of the coupe of the
Question (a) (i) (ii) (b) The Exp (i) (iii) Suggest (a) (i) T	$\frac{1}{2}m < c^2 > = \frac{3}{2}kT$ $T = \frac{m < c^2 >}{3k} = \frac{4u < c^2 >}{3k} = \frac{4(1.66 \times 10^{-27})(2768.5^2)}{3(1.38 \times 10^{-23})} = 1229 \text{ K}$ $\frac{m 6}{3k}$ State what is meant by the <i>internal energy</i> of a system. Explain why the internal energy of an ideal gas is proportional to the mean square speed $< c^2 >$ of its atoms. [4] first law of thermodynamics may be expressed as gain in internal energy = $q + w$. lain the symbol q , w . [3] [D00/P2/Q2] ted Solution: The internal energy of a system is the sum of all the microscopic kinetic appotential energies of the molecules within the system.	19 177
Question (a) (i) (ii) (b) The Exp (i) (iii) Suggest (a) (i) 7	$\frac{1}{2}m < c^2 > = \frac{3}{2}kT$ $T = \frac{m < c^2 >}{3k} = \frac{4u < c^2 >}{3k} = \frac{4(1.66 \times 10^{-27})(2768.5^2)}{3(1.38 \times 10^{-23})} = 1229 \text{ K}$ $\frac{m 6}{3k}$ State what is meant by the <i>internal energy</i> of a system. Explain why the internal energy of an ideal gas is proportional to the mean square speed $< c^2 >$ of its atoms. [4] first law of thermodynamics may be expressed as gain in internal energy = $q + w$. Idain the symbol q , w . [3] $\frac{1}{[D00/P2/Q7]}$ The internal energy of a system is the sum of all the microscopic kinetic as	and tial an aptic nal
Question (a) (i) (ii) (b) The Exp (i) (ii) Suggest (a) (i) The	$T = \frac{m < c^2 >}{3k} = \frac{4u < c^2 >}{3k} = \frac{4(1.66 \times 10^{-27})(2768.5^2)}{3(1.38 \times 10^{-23})} = 1229 \text{ K}$ $\frac{m \cdot 6}{3k}$ State what is meant by the <i>internal energy</i> of a system. Explain why the internal energy of an ideal gas is proportional to the mean square speed $< c^2 >$ of its atoms. [4] If its law of thermodynamics may be expressed as $\frac{1}{3k}$ gain in internal energy = $\frac{1}{3k}$ w. [5] Ited Solution: The internal energy of a system is the sum of all the microscopic kinetic and the attraction between the atoms in an ideal gas is negligible. Hence, the potential energies of the atoms are negligible. This means that the internal energy of deal gas is just the sum of all the kinetic energies of the atoms. Since the kinetic energies of the atoms.	and tial an aptic nal
Question (a) (i) (ii) (b) The Exp (i) (ii) Suggest (a) (i) The (b) (i) H	$T = \frac{m < c^2 >}{3k} = \frac{4u < c^2 >}{3k} = \frac{4(1.66 \times 10^{-27})(2768.5^2)}{3(1.38 \times 10^{-23})} = 1229 \text{ K}$ The energies of the atoms in an ideal gas is proportional to the mean square speed $< c^2 > 0$ of its atoms. The internal energy of a system is the sum of all the microscopic kinetic and specific so the atoms are negligible. This means that the internal energy of the internal energy of the internal energy of the internal energy of the atoms. Since the kinetenergies are proportional to the mean-square speed of its atoms, the internal energy of the ideal gas is also proportional to the mean-square speed of its atoms, the internal energy of the ideal gas is also proportional to the mean-square speed of its atoms, the internal energy of the ideal gas is also proportional to the mean-square speed of its atoms, the internal energy of the ideal gas is also proportional to the mean-square speed of its atoms, the internal energy of the ideal gas is also proportional to the mean-square speed of its atoms.	and tial an aptic nal
Question (a) (i) (ii) (b) The Exp (i) (ii) Suggest (a) (i) The (b) (i) H	$\frac{1}{2}m < c^2 >= \frac{3}{2}kT$ $T = \frac{m < c^2 >}{3k} = \frac{4u < c^2 >}{3k} = \frac{4(1.66 \times 10^{-27})(2768.5^2)}{3(1.38 \times 10^{-23})} = 1229 \text{ K}$ $\frac{m 6}{2}$ State what is meant by the <i>internal energy</i> of a system. Explain why the internal energy of an ideal gas is proportional to the mean square speed $< c^2 >$ of its atoms. [4] first law of thermodynamics may be expressed as gain in internal energy = $q + w$. Idiain the symbol q , w . [5] The internal energy of a system is the sum of all the microscopic kinetic and protential energies of the molecules within the system. The attraction between the atoms in an ideal gas is negligible. Hence, the potential energies of the atoms are negligible. This means that the internal energy of deal gas is just the sum of all the kinetic energies of the atoms. Since the kinetic energies are proportional to the mean-square speed of its atoms, the internal energy of the ideal gas is also proportional to the mean-square speed of its atoms, the internal energy of the ideal gas is also proportional to the mean-square speed of its atoms, the internal energy of the ideal gas is also proportional to the mean-square speed of its atoms.	and tial an aptic nal

(iv) The Principle of Conservation of Momentum states that in any system in which no external forces act, the total momentum of the objects in the system in any given direction remains constant. (b) (i) The total kinetic energies of the molecules after the collision is the same as it was before the collision. (ii) The two molecules move off in opposite directions. (c) (i) Since the two molecules collide head-on and move off in opposite directions, the velocity of separation of the two molecules after the collision equals the relative velocity with which they approach before collision = 1.88 × 10³ + 405 = 2.29 × 10³ ms⁻¹ (ii) After the collision: hydrogen molecule v _i	1	1 Ideal Gases	Page 10	
(iv) The Principle of Conservation of Normanium states that in any system in any given direction remains constant. (b) (i) The total kinetic energies of the molecules after the collision is the same as it was before the collision. (ii) The two molecules move off in opposite directions. (c) (ii) Since the two molecules collide head-on and move off in opposite directions, the velocity of separation of the two molecules after the collision equals the relative velocity of separation of the two molecules after the collision equals the relative velocity with which they approach before collision = 1.88 × 10 ¹ + 405 = 2.29 × 10 ² ms ⁻¹ (iii) After the collision: hydrogen molecule **V _e			Learnine	CORNE
 (b) (i) The total kinetic energies of the molecules after the collision is the same as it was before the collision. (ii) The two molecules move off in opposite directions. (c) (i) Since the two molecules collide head-on and move off in opposite directions, the velocity of separation of the two molecules after the collision equals the relative velocity with which they approach before collision = 1.88 × 10° + 405 = 2.29 × 10° ms⁻¹ (ii) After the collision:	(iv)	no external forces act, the total momentum of the objects in the sy	COLLI III WILLIOIT	
 (ii) The two molecules move off in opposite directions, the velocity of separation of the two molecules after the collision equals the relative velocity with which they approach before collision = 1.88 x 10¹ + 405 = 2.29 x 10³ ms⁻¹ (ii) After the collision: hydrogen molecule w₂	(b) (i)	The total kinetic energies of the molecules after the collision is the sa	ame as it was	
 (e) (i) Since the two molecules collide head-on and move off in opposite directions, the velocity of separation of the two molecules after the collision equals the relative velocity with which they approach before collision = 1.88 × 10³ + 405 = 2.29 × 10³ ms⁻¹ (ii) After the collision:	(ii)			
= 1.88 × 10³ + 405 = 2.29 × 10³ ms⁻¹ (ii) After the collision: hydrogen molecule V _e mass 2.00 u Mass 32.0 u By the Law of Conservation of Momentum, Total momentum after collision = Total momentum before collision (2.00u)(-V _e) + (32.0u)(v _e) = (2.00u)(1.88 × 10³) + (32.0u)(-405) 32v _e - 2v _e = -9200 i.e. v _e + 4600 + 16v _e (iii) From part (c)(i), V _o = (-v _e) = 2.29 × 10³ i.e. v _e + v _e = 2.29 × 10³ v _e = 2.29 × 10³ by v _e = 136 ms⁻¹ Hence, the velocity of the oxygen molecule after the collision is 136 ms⁻¹ directed to the left. Now, v _e = 6400 + 16(-136) = 2.43 × 10³ ms⁻¹ (d) (i) It is difficult to justify the application of this equation to this situation because the equation is more applicable in a system containing a large number of molecules of varying speed in random motion. (ii) Its possible for the two molecules in the gas to have different values of 7 before the collision by confining them in thermally insulated and separate containers and then allowing them to mix through diffusion. Question 8 (a) Derive from the definitions of density and pressure, the equation ρ = ρgh for the pressure exerted by a column of liquid of height h and density ρ. (b) (i) Using the kinetic model of a gas, explain how a pressure is exerted by a gas. (ii) Calculate the root-mean-square speed of gas molecules in a gas at pressure 1.05 × 10° Pa and of density 1.29 kgm². (c) (i) State two physical properties which may be used for the measurement of 25 the direction of the pressure was the collision by used for the measurement of 25 the direction of the collision by unknown that the model of a gas and the substantial properties which may be used for the measurement of 25 the direction of the collision by unknown the definitions of density 1.29 kgm².		Since the two molecules collide head-on and move off in opposite of velocity of separation of the two molecules after the collision equal	lirections, the s the relative	
(ii) After the collision: hydrogen molecule v _s mass 2.00 u mass 32.0 u By the Law of Conservation of Momentum, Total momentum after collision = Total momentum before collision (2.00u)(-ν _H) + (32.0u)(ν _o) = (2.00u)(1.88 × 10 ³) + (32.0u)(-405) 32ν _o - 2ν _H = -9200 i.e. ν _H = 4600 + 16ν _o (iii) From part (e)(i). V _o = (-ν _H) = 2.29 × 10 ³ i.e. ν _o + γ _H = 2.29 × 10 ³ v _o = (2.29 × 10 ³ - 4600) = -136 ms ⁻¹ Hence, the velocity of the oxygen molecule after the collision is 136 ms ⁻¹ directed to the left. Now, ν _H = 6400 + 16(-136) = 2.43 × 10 ³ ms ⁻¹ (d) (i) It is difficult to justify the application of this equation to this situation because the equation is more applicable in a system containing a large number of molecules of varying speed in random motion. (ii) It is possible for the two molecules in the gas to have different values of T before the collision by confining them in thermally insulated and separate containers and then allowing them to mix through diffusion. Question 8 (a) Derive from the definitions of density and pressure, the equation ρ = ρgh for the pressure exerted by a column of liquid of height h and density ρ. (ii) Calculate the root-mean-square speed of gas molecules in a gas at pressure 1.05 × 10 ³ Pa and of density 1.29 kgm ⁻² . (b) (c) (i) State two physical properties which may be used for the measurement of the state of the state of the state of the measurement of the state of the state of the measurement of the state of the state of the measurement of the state		$= 1.88 \times 10^3 + 405$		
hydrogen molecule v ₁ mass 2.00 u mass 32.0 u By the Law of Conservation of Momentum, Total momentum after collision = Total momentum before collision (2.00u)(-v _H)+(32.0u)(v ₀) = (2.00u)(1.88×10³)+(32.0u)(-405) 32v ₂ - 2v _H = -9200 i.e. v _H = 4600+16v ₀ (iii) From part (e)(i). v ₀ = (-v _H) = 2.29×10³ i.e. v ₀ + v _H = 2.29×10³ v ₀ = (2.29×10³ directle the collision is 136 ms⁻¹ Hence, the velocity of the oxygen molecule after the collision is 136 ms⁻¹ directed to the left. Now, v _H = 6400 + 16(-136) = 2.43 × 10³ ms⁻¹ (d) (i) It is difficult to justify the application of this equation to this situation because the equation is more applicable in a system containing a large number of molecules of varying speed in random motion. (ii) It is possible for the two molecules in the gas to have different values of 7 before the collision by confirming them in thermally insulated and separate containers and then allowing them to mix through diffusion. Question 8 (a) Derive from the definitions of density and pressure, the equation p = pgh for the pressure exerted by a column of liquid of height h and density p. (ii) Calculate the root-mean-square speed of gas molecules in a gas at pressure 15 ms and of density 1.29 kgm². (b) (i) Using the kinetic model of a gas, explain how a pressure is exerted by a gas. (iii) Calculate the root-mean-square speed of gas molecules in a gas at pressure 15 ms and 15 ms and 15 ms and 16 ms and 17 ms and 17 ms and 17 ms and 17 ms and 18 ms	<i>(</i> ***)			
mass 2.00 <i>u</i> mass 32.0 <i>u</i> By the Law of Conservation of Momentum, Total momentum after collision = Total momentum before collision (2.00 <i>u</i>)(- <i>v</i> _H) + (32.0 <i>u</i>)(<i>v</i> _o) = (2.00 <i>u</i>)(1.88×10³) + (32.0 <i>u</i>)(-405) 32 <i>v</i> _o - 2 <i>v</i> _H = -9200 i.e. <i>v</i> _H = 4600 + 16 <i>v</i> _o i.e. <i>v</i> _o + (<i>v</i> _H) = 2.29×10³ i.e. <i>v</i> _o + (<i>v</i> _H) = 2.29×10³ From pat (c)(ii), <i>v</i> _o + (4600 + 16 <i>v</i> _o) = 2.29×10³ <i>v</i> _o = (-2.93 × 10³ - 4600) Hence, the velocity of the oxygen molecule after the collision is 136 ms⁻¹ directed to the left. Now, <i>v</i> _H = 6400 + 16(-136) = 2.43 × 10³ ms⁻¹ (d) (i) It is difficult to justify the application of this equation to this situation because the equation is more applicable in a system containing a large number of molecules of varying speed in random motion. (ii) It is possible for the two molecules in the gas to have different values of <i>T</i> before the collision by confining them in thermally insulated and separate containers and then allowing them to mix through diffusion. Question 8 (a) Derive from the definitions of density and pressure, the equation <i>p</i> = <i>pgh</i> for the pressure exerted by a column of liquid of height <i>h</i> and density <i>p</i> . (b) (i) Using the kinetic model of a gas, explain how a pressure is exerted by a gas. (ii) Calculate the root-mean-square speed of gas molecules in a gas at pressure 1.05 × 10° Pa and of density 1.29 kgm². (c) (i) State two physical properties which may be used for the measurement of 120 ms² and 10 ms²	(11)			
mass 2.00 u mass 32.0 u unknown quantities. Make guess of the directions of and v_s and indicate them the diagram. Total momentum after collision = Total momentum before collision $(2.00u)(-v_H) + (32.0u)(v_o) = (2.00u)(1.88 \times 10^3) + (32.0u)(-405)$ $32v_o - 2v_H = -9200$ i.e. $v_H = 4600 + 16v_o$ (iii) From part (e)(i). $v_o = (-v_H) = 2.29 \times 10^3$ i.e. $v_o + v_H = 2.29 \times 10^3$ $v_o = \frac{2.29 \times 10^3 - 4600}{17} = -136 \text{ ms}^{-1}$ Hence, the velocity of the oxygen molecule after the collision is 136 ms $^{-1}$ directed to the left. Now, $v_H = 6400 + 16(-136)$ $= 2.43 \times 10^9 \text{ ms}^{-1}$ (d) (i) It is difficult to justify the application of this equation to this situation because the equation is more applicable in a system containing a large number of molecules of varying speed in random motion. (ii) It is possible for the two molecules in the gas to have different values of T before the collision by confining them in thermally insulated and separate containers and then allowing them to mix through diffusion. Question 8 (a) Derive from the definitions of density and pressure, the equation $p = pgh$ for the pressure exerted by a column of liquid of height h and density p . [3] (b) (i) Using the kinetic model of a gas, explain how a pressure is exerted by a gas. (ii) Calculate the root-mean-square speed of gas molecules in a gas at pressure 1.05×10^9 Pa and of density 1.29 kgm^{-2} . [5]		V _H V _O	problem, sketch	a diagra
By the Law of Conservation of Momentum, Total momentum after collision = Total momentum before collision (2.00u)(-v ₊) + (32.0u)(v ₋) = (2.00u)(1.88 × 10 ³) + (32.0u)(-405) 32v _o - 2v _H = -9200 i.e. v _H = 4600 + 16v _o (iii) From part (e)(i), v _o = (-v _H) = 2.29 × 10 ³ i.e. v _o + v _H = 2.29 × 10 ³ i.e. v _o + v _H = 2.29 × 10 ³ v _o = \frac{2.29 \times 10^3 + (32.0u)}{17} Hence, the velocity of the oxygen molecule after the collision is 136 ms ⁻¹ directed to the left. Now, v _H = 6400 + 16(-136) = 2.43 × 10 ³ ms ⁻¹ (d) (i) It is difficult to justify the application of this equation to this situation because the equation is more applicable in a system containing a large number of molecules of varying speed in random motion. (ii) It is possible for the two molecules in the gas to have different values of T before the collision by confining them in thermally insulated and separate containers and then allowing them to mix through diffusion. Question 8 (a) Derive from the definitions of density and pressure, the equation p = pgh for the pressure exerted by a column of liquid of height h and density \(\rho_{\text{o}} \) (1) Using the kinetic model of a gas, explain how a pressure is exerted by a gas. (ii) Calculate the root-mean-square speed of gas molecules in a gas at pressure 1.05 × 10 ⁵ Pa and of density 1.29 kgm ⁻³ . (c) (i) State two physical properties which may be used for the measurement of the collision of the simulation of the collision of the measurement of the collision of the pressure which may be used for the measurement of the collision of the collision of the measurement of the collision of the collision of the measurement of the collision		mass 2.00 u mass 32.0 u	unknown quant	ities. Mak
Total momentum after collision = Total momentum before collision $ (2.00u)(-v_{\rm H}) + (32.0u)(v_{\rm O}) = (2.00u)(1.88 \times 10^3) + (32.0u)(-405) $		By the Law of Conservation of Momentum,	and v_o and indi	
 (2.00u)(-v_H) + (32.0u)(v_o) = (2.00u)(1.88×10³) + (32.0u)(-405) 32v_o - 2v_H = -9200 i.e. v_H = 4600 + 16v_o (iii) From part (c)(i). V_o = (-v_H) = 2.29×10³ i.e. v_o + v_H = 2.29×10³ i.e. v_o + v_H = 2.29×10³ From pat (c)(ii), V_o + (4600 + 16v_o) = 2.29×10³ V_o = (2.29×10³ V_o = (2.29×10³ V_o = 2.29×10³ V_o = 2.29×10³ Hence, the velocity of the oxygen molecule after the collision is 136 ms⁻¹ (d) (i) It is difficult to justify the application of this equation to this situation because the equation is more applicable in a system containing a large number of molecules of varying speed in random motion. (ii) It is possible for the two molecules in the gas to have different values of T before the collision by confining them in thermally insulated and separate containers and then allowing them to mix through diffusion. Question 8 (a) Derive from the definitions of density and pressure, the equation p = ρgh for the pressure exerted by a column of liquid of height h and density ρ. [3] (b) (i) Using the kinetic model of a gas, explain how a pressure is exerted by a gas. (ii) Calculate the root-mean-square speed of gas molecules in a gas at pressure 1.05 × 10³ Pa and of density 1.29 kgm⁻³. [5] (c) (i) State two physical properties which may be used for the measurement of 121 		Total momentum after collision = Total momentum before collision	n	two unkno
 i.e. v_H = 4600+16v_o (iii) From part (c)(i). v_o = (-v_H) = 2.29×10³ i.e. v_o + v_H = 2.29×10³ i.e. v_o + v_H = 2.29×10³ v_O = (-100) = 2.29×10³ v_O = 2.29×10³ + 2.29×10³ v_O = 2.29×10³ + 2.29×10³ + 2.29×10³ v_O = 2.29×10³ + 2.29×			quantities, v_0 a pair of simulta	nd v _H , for
 (iii) From part (c)(1). v_o = (-v_H) = 2.29×10³ i.e. v_o + v_H = 2.29×10³ From pat (c)(ii), v_O + (4600 + 16v_O) = 2.29×10³ v_O = (2.29×10³ + 2.29×10³ + 2.		i.e. $v_{\rm H} = 4600 + 16v_{o}$	convention of t	aking vec
 i.e. v_o + v_H = 2.29×10³ From pat (c)(ii), v_o + (4600+16v_o) = 2.29×10³ v_o = 2.29×10³ - 4600 hence, the velocity of the oxygen molecule after the collision is 136 ms⁻¹ directed to the left. Now, v_H = 6400 + 16(-136) = 2.43 × 10³ ms⁻¹ (d) (i) It is difficult to justify the application of this equation to this situation because the equation is more applicable in a system containing a large number of molecules of varying speed in random motion. (ii) It is possible for the two molecules in the gas to have different values of <i>T</i> before the collision by confining them in thermally insulated and separate containers and then allowing them to mix through diffusion. Question 8 (a) Derive from the definitions of density and pressure, the equation p = ρgh for the pressure exerted by a column of liquid of height h and density ρ. (b) (i) Using the kinetic model of a gas, explain how a pressure is exerted by a gas. (ii) Calculate the root-mean-square speed of gas molecules in a gas at pressure 1.05 × 10⁵ Pa and of density 1.29 kgm⁻³. (c) (ii) State two physical properties which may be used for the measurement of 	(ii			
the supposed direction was taken while solving problem. $v_{o} + (4600 + 16v_{o}) = 2.29 \times 10^{3} - 4600 = -136 \text{ ms}^{-1}$ Hence, the velocity of the oxygen molecule after the collision is 136 ms ⁻¹ directed to the left. Now, $v_{H} = 6400 + 16(-136) = 2.43 \times 10^{3} \text{ ms}^{-1}$ (d) (i) It is difficult to justify the application of this equation to this situation because the equation is more applicable in a system containing a large number of molecules of varying speed in random motion. (ii) It is possible for the two molecules in the gas to have different values of <i>T</i> before the collision by confining them in thermally insulated and separate containers and then allowing them to mix through diffusion. Question 8 (a) Derive from the definitions of density and pressure, the equation $p = \rho gh$ for the pressure exerted by a column of liquid of height <i>h</i> and density ρ . (b) (i) Using the kinetic model of a gas, explain how a pressure is exerted by a gas. (ii) Calculate the root-mean-square speed of gas molecules in a gas at pressure 1.05 × 10 ⁵ Pa and of density 1.29 kgm ⁻³ . (c) (i) State two physical properties which may be used for the measurement of 121			v_{o} simply me	ans that
 V_O = 2.29 × 10³ -4600 = -136 ms⁻¹ problem. Hence, the velocity of the oxygen molecule after the collision is 136 ms⁻¹ directed to the left. Now, V_H = 6400 + 16(-136) = 2.43 × 10³ ms⁻¹ (d) (i) It is difficult to justify the application of this equation to this situation because the equation is more applicable in a system containing a large number of molecules of varying speed in random motion. (ii) It is possible for the two molecules in the gas to have different values of <i>T</i> before the collision by confining them in thermally insulated and separate containers and then allowing them to mix through diffusion. Question 8 (a) Derive from the definitions of density and pressure, the equation p = ρgh for the pressure exerted by a column of liquid of height h and density ρ. [3] (b) (i) Using the kinetic model of a gas, explain how a pressure is exerted by a gas. (ii) Calculate the root-mean-square speed of gas molecules in a gas at pressure 1.05 × 10⁵ Pa and of density 1.29 kgm⁻³. [5] (c) (i) State two physical properties which may be used for the measurement of the collision is 136 ms⁻¹ directed to the left. 				
 Hence, the velocity of the oxygen molecule after the collision is 136 ms⁻¹ directed to the left. Now, v_H = 6400 + 16(-136) = 2.43 × 10³ ms⁻¹ (d) (i) It is difficult to justify the application of this equation to this situation because the equation is more applicable in a system containing a large number of molecules of varying speed in random motion. (ii) It is possible for the two molecules in the gas to have different values of <i>T</i> before the collision by confining them in thermally insulated and separate containers and then allowing them to mix through diffusion. Question 8 (a) Derive from the definitions of density and pressure, the equation p = ρgh for the pressure exerted by a column of liquid of height h and density ρ. [3] (b) (i) Using the kinetic model of a gas, explain how a pressure is exerted by a gas. (ii) Calculate the root-mean-square speed of gas molecules in a gas at pressure 1.05 × 10⁵ Pa and of density 1.29 kgm⁻³. [5] (c) (i) State two physical properties which may be used for the measurement of the collision in the collision is 136 ms⁻¹ directed to the collision is 136 ms⁻		$v_0 + (4600 + 16v_0) = 2.29 \times 10^3$		e solving
 to the left. Now, v_H = 6400 + 16(-136) = 2.43 × 10³ ms⁻¹ (d) (i) It is difficult to justify the application of this equation to this situation because the equation is more applicable in a system containing a large number of molecules of varying speed in random motion. (ii) It is possible for the two molecules in the gas to have different values of <i>T</i> before the collision by confining them in thermally insulated and separate containers and then allowing them to mix through diffusion. Question 8 (a) Derive from the definitions of density and pressure, the equation p = pgh for the pressure exerted by a column of liquid of height h and density ρ. [3] (b) (i) Using the kinetic model of a gas, explain how a pressure is exerted by a gas. (ii) Calculate the root-mean-square speed of gas molecules in a gas at pressure 1.05 × 10⁵ Pa and of density 1.29 kgm⁻³. [5] (c) (i) State two physical properties which may be used for the measurement of [21] 		$v_0 = \frac{2.29 \times 10^3 - 4600}{17} = -136 \text{ ms}^{-1}$	problem.	
 Now, v_H = 6400 + 16(-136) = 2.43 × 10³ ms⁻¹ (d) (i) It is difficult to justify the application of this equation to this situation because the equation is more applicable in a system containing a large number of molecules of varying speed in random motion. (ii) It is possible for the two molecules in the gas to have different values of <i>T</i> before the collision by confining them in thermally insulated and separate containers and then allowing them to mix through diffusion. Question 8 (a) Derive from the definitions of density and pressure, the equation p = pgh for the pressure exerted by a column of liquid of height h and density ρ. [3] (b) (i) Using the kinetic model of a gas, explain how a pressure is exerted by a gas. (ii) Calculate the root-mean-square speed of gas molecules in a gas at pressure 1.05 × 10⁵ Pa and of density 1.29 kgm⁻³. [5] (c) (i) State two physical properties which may be used for the measurement of the pressure of the pressure of the pressure of the measurement of the pressure of the			s ms ⁻¹ directed	
 equation is more applicable in a system containing a large number of molecules of varying speed in random motion. (ii) It is possible for the two molecules in the gas to have different values of <i>T</i> before the collision by confining them in thermally insulated and separate containers and then allowing them to mix through diffusion. Question 8 (a) Derive from the definitions of density and pressure, the equation p = pgh for the pressure exerted by a column of liquid of height h and density ρ. [3] (b) (i) Using the kinetic model of a gas, explain how a pressure is exerted by a gas. (ii) Calculate the root-mean-square speed of gas molecules in a gas at pressure 1.05 x 10⁵ Pa and of density 1.29 kgm⁻³. [5] (c) (i) State two physical properties which may be used for the measurement of particular the properties which may be used for the measurement of particular the properties which may be used for the measurement of particular the properties which may be used for the measurement of particular the properties which may be used for the measurement of particular the properties which may be used for the measurement of particular the properties which may be used for the measurement of particular the properties which may be used for the measurement of particular the properties which may be used for the measurement of particular the properties which may be used for the measurement of particular the properties which may be used for the measurement of particular the properties which may be used for the measurement of particular the properties which may be used for the measurement of particular the properties which may be used for the measurement of particular the properties which may be used for the measurement of particular the properties which may be used for the measurement of particular the properties which may be used for the measurement of the particular the properties which may be used for the particular the particular the particular the particular the		Now, $v_{\rm H} = 6400 + 16(-136)$		
 (ii) It is possible for the two molecules in the gas to have different values of <i>T</i> before the collision by confining them in thermally insulated and separate containers and then allowing them to mix through diffusion. Question 8 (a) Derive from the definitions of density and pressure, the equation <i>p</i> = <i>pgh</i> for the pressure exerted by a column of liquid of height <i>h</i> and density <i>ρ</i>. [3] (b) (i) Using the kinetic model of a gas, explain how a pressure is exerted by a gas. (ii) Calculate the root-mean-square speed of gas molecules in a gas at pressure 1.05 x 10⁵ Pa and of density 1.29 kgm⁻³. [5] (c) (i) State two physical properties which may be used for the measurement of the collision of the support of the collision of the collision of the measurement of the collision of the collision of the measurement of the collision of the coll	(d) (i)	equation is more applicable in a system containing a large number	n because the r of molecules	
 Question 8 (a) Derive from the definitions of density and pressure, the equation p = ρgh for the pressure exerted by a column of liquid of height h and density ρ. [3] (b) (i) Using the kinetic model of a gas, explain how a pressure is exerted by a gas. (ii) Calculate the root-mean-square speed of gas molecules in a gas at pressure 1.05 × 10⁵ Pa and of density 1.29 kgm⁻³. [5] (c) (i) State two physical properties which may be used for the measurement of [2] 	(11) It is possible for the two molecules in the gas to have different values the collision by confining them in thermally insulated and separate	ues of T before containers and	
 (a) Derive from the definitions of density and pressure, the equation p = ρgh for the pressure exerted by a column of liquid of height h and density ρ. [3] (b) (i) Using the kinetic model of a gas, explain how a pressure is exerted by a gas. (ii) Calculate the root-mean-square speed of gas molecules in a gas at pressure 1.05 x 10⁵ Pa and of density 1.29 kgm⁻³. [5] (c) (i) State two physical properties which may be used for the measurement of [2] 		and access of object books in his one if he (iv.)	registration of the second of	
 (b) (i) Using the kinetic model of a gas, explain how a pressure is exerted by a gas. (ii) Calculate the root-mean-square speed of gas molecules in a gas at pressure 1.05 x 10⁵ Pa and of density 1.29 kgm⁻³. (c) (i) State two physical properties which may be used for the measurement of [2] 	(a)	Derive from the definitions of density and pressure, the equation p	= pgh for the	
 (ii) Calculate the root-mean-square speed of gas molecules in a gas at pressure 1.05 x 10⁵ Pa and of density 1.29 kgm⁻³. (c) (i) State two physical properties which may be used for the measurement of [2] 		pressure exerted by a column of liquid of height h and density ρ .	[3]	
1.05 x 10 ⁵ Pa and of density 1.29 kgm ⁻³ . (c) (i) State two physical properties which may be used for the measurement of				
		1.05 x 10 ⁵ Pa and of density 1.29 kgm ⁻³ .	one to man of sit it expense	
	(c)		asurement of [2]	

topic 11	Ideal Gases Page 11		Contract of the second
1000 miles		learning	CORNER
(ii)	Describe the principle features of a thermocouple thermometer and indicate its advantage and disadvantages. [5]	0	
,,,,,			
(111)	An ideal gas is defined as one for which, at constant pressure, the volume of the gas is proportional to the absolute temperature. Calculate the absolute		
	temperature T when an ideal gas has volume 0.00783 m³, assuming that the		
	same mass of the ideal gas had volume 0.00308 m³ when at the same pressure and at temperature 273 K. [2]		
0.0	The Market of th		
(IV)	Express 273 K and your value of T from (iii) as temperatures measured on the Celsius scale. [1]		
(v)	Comment on the statement 'Today the temperature is 40 °C and yesterday it		
(")	was 20 °C so it is twice as hot today as it was yesterday'. [2]		
	[D00/P3/Q5]		
Sugges	ted Solution:		
(a) Dens	sity is defined as the mass per unit volume, i.e. $\rho = \frac{m}{V}$.		
	euro is defined as the force per unit area n = F		
	sure is defined as the force per unit area, $p = \frac{F}{A}$.		
Cons	sider a horizontal area A at a depth h below the surface of the liquid.		
	A CONTRACTOR OF THE CONTRACTOR		
	weight of column of liquid, W		
	h		
	↓ A		
	by of the thermocouple the monder is allegied by the	SHOOK ON THE	
	Force, F acting on the area A = Weight, W of the column of liquid		
	F= mg		
	$= \rho Vg \ (\because \rho = \frac{m}{V})$		
	$= \rho Ahg \ (\because V = Ah)$	ORI HERMAND IN (18)	
Hend	be the pressure, p acting on the area A is		
	$p = \frac{F}{A} = \frac{\rho Ahg}{A} = \rho gh$		
	A A PS- 80,000.0		
	n the kinetic model, a gas consists of a great number of molecules, behaving like	ETS - T = 5 (9)	
	perfectly elastic spheres, in random motion. Whenever a molecule bounces off a wall of the container, the force which it exerts on the wall equals the rate of change		
	of its momentum. The average force exerted by the gas on the whole container	R emeanters T	
	s the average rate at which the momentum of the molecules changes due to collision with the walls. The pressure exerted by the gas on the container walls		
	s hence the force per unit area of the walls.		
,	1 .		
(ii)	$p = \frac{1}{3}\rho < c^2 >$	= 100 = 9	
- 1	Root-mean-square speed of the gas molecules,	Characteristics and the	
	30 2 4 05 4 105		
	$\sqrt{\langle c^2 \rangle} = \sqrt{\frac{3\rho}{\rho}} = \sqrt{\frac{3 \times 1.05 \times 10^5}{1.29}} = 494 \text{ ms}^{-1}$	(c) (i) Other phy	sical proper-
(0) (1)		(c) (i) Other phy ties:	aloai proper•
	Two physical properties which may be used for the measurement of temperature:	- volume of a	gas.
	length of a liquid column.	- e.m.f. of	
2	2. electrical resistance of a metal.	formed by tw metals.	o different
		metais.	

topic	11 Ideal Gases Page 13	Barra Barra & Carra
		learning CORNER
Oue	stion 9	
-	State three of the assumptions of the kinetic theory of gases. [3]	
	Consider a single molecule of mass <i>m</i> in a cubical container of internal side length	
	t. The molecule is travelling with velocity v directly towards one of the walls W as shown in Fig. 3.1. Collisions between the molecule and the walls are elastic.	
	nd taw, average force on wall W as a next, of impacts by the	
	W	AN EN BRUDGRONI
	1 m	
	15 evide entre appealed by the majority	
	Fin 04	
	Fig. 3.1	
	Deduce	
	(i) the change in the molecule's momentum when it collides with wall W,	
	(ii) the time between collisions with wall W.	leebt on erromit
	(iii) the momentum change per unit time for the molecule at wall W,	
	(iv) the average force on wall W as a result of impacts by the molecule,	
	(v) the average pressure on wall W. [6]	
(c)	The pressure p of an ideal gas is given by the equation	
	$p = \frac{1}{3} \frac{Nm}{V} < c^2 > .$	
	Explain briefly how this result can be deduced by modifying the equation derived in (b)(v).	
	Use the equation of state for an ideal gas, together with the equation given in (c), to show that the average translational kinetic energy of a molecule is proportional to the absolute temperature <i>T</i> . [3]	ang leak kis ter tur.
	A container of gas holds 3.6 × 10 ²⁵ molecules of an ideal gas each with a mass	
	of 4.6 × 10 ⁻²⁶ kg. The root-mean-square speed of the molecules is 270 ms ⁻¹ and the container is on an aircraft travelling at 240 ms ⁻¹ . Calculate	n K7 - 3 m
	(i) the kinetic energy as a result of the random motion of all the molecules in the gas.	
	(ii) the kinetic energy the gas has as a result of being on the aircraft,	(a) (h) Xinetic energ
	(iii) the internal energy of the gas. [5]	
	[D02/P3/Q3]	×*01×8.0×
•	TOWNS OF BOUNDARY WAS A PROPERTY.	mana olivati 188
	gested Solution:	
	hree of the assumptions of the Kinetic Theory of Gases:	
	A gas consists of particles called molecules.	
	2) A molecule moves with uniform velocity between collisions.	
(3	3) The collisions of the molecules with one another and with the walls are perfectly elastic.	
	Change in the molecule's momentum when it collides with wall W = mass × (final velocity – initial velocity)	 (b) (i) Remember that the magnitude of the velocity before collision is equal to
(b) (i	DEBOTE THE CONTRACTOR OF THE C	
	$= m(v - (-v)) = 2mv$ i) Time between collisions with wall W = $\frac{2t}{V}$.	that after collision but the directions are opposite.

topic 11 Ideal Gases	Page 14		
	Lea	ming	CORNER
(iii) Momentum change per unit time for	the molecule at wall W		
Momentum change	···		
Time between collisions with wall	e of the assumptions of the kinetic theory of gesting		
$=\frac{2mv}{2i/v}$			
$=\frac{mv^2}{l}$			
(iv) By Newton's 3rd law average force	e on wall W as a result of impacts by the		
molecule is equal in magnitude to the molecule at wall W, i.e. $\frac{mv^2}{l}$.	the momentum change per unit time for the		
molecule at wait 11, i.e. 1			
(v) Average pressure on wall W = Aver	rage force on wall W Area of wall W		
$=\frac{mv^2}{r^2}$	<u>II</u>		
$=\frac{mv^2}{l^3}$			
(c) The equation in (b)(v) is derived for the c	case of a single molecule moving horizontally.		
(c) The equation in (b)(v) is derived for the C	such molecules moving randomly in any		
Suppose an ideal gas consists of N three directions within the cubical contai	iner.		
For any molecule, $c^2 = c_x^2 + c_y^2 + c_z^2$.	Wiley in sector on well W.		
Since N is large and the molecules are	in random motion, the mean-square-speeds,		
$\langle c_x^2 \rangle = \langle c_y^2 \rangle = \langle c_z^2 \rangle = \frac{1}{3} \langle c^2 \rangle$			
$\Rightarrow \langle v^2 \rangle = \langle c_x^2 \rangle = \frac{1}{3} \langle c^2 \rangle$			
Nm 1 -2 1 Nm - 2 - (V = ,3)		
$\therefore p = \frac{Nm}{r^3} \times \frac{1}{3} < c^2 > = \frac{1}{3} \frac{Nm}{V} < c^2 > (:)$	y = ()		
(D. For an ideal gas			
(d) For an ideal gas,	Tendersone set		
$pV = NkT \Rightarrow p = \frac{NkT}{V} \Rightarrow \frac{N}{V}$	$\frac{\sqrt{V}}{V} = \frac{1}{3} \frac{V(I)}{V} < C^2 >$		
$\Rightarrow kT = \frac{1}{3}m < c^2 > \Rightarrow T = \frac{2}{3k}$	$-\frac{1}{2}m < c^2 >$		
	Too is on air airoralt travalling at 200 ms-1, 020-2		
$\Rightarrow T \propto \frac{1}{2}m < c^2 >$			
(a) (i) Kinetic energy as a result of the re	andom motion of all the molecules in the gas		
(e) (i) Kinetic energy as a result of the ra $= N \times \frac{1}{2} m < c^2 >$	asp ent to vorone tome		
$=3.6\times10^{25}\times\frac{1}{2}(4.6\times10^{-26})\times270^{2}$	= 6.04×10° J		
(ii) Kinetic energy of the gas as a res			
$=\frac{1}{2}Mv^2$	assumptions of the Colean Tracks of Gaseau		
$= \frac{1}{2} (3.6 \times 10^{25} \times 4.6 \times 10^{-26}) 240^2 =$	4.77×10° J		
(iii) Internal energy of the gas = Total	kinetic energies of the molecules in random (e)	(iii) Note the of the contain	at the bulk mot
motio	on in the gas	not affect the	e internal ene
= 6.04×	×10 ⁴ J (from (e)(i))	of the gas. I	n this case,
		potential en molecular f	ergy from int
		the molecular	es is zero.
		* *)(() =	
			1111

tonio	c 11 Ideal Gas	es		Page 16	NET ALL SENSE SERVICE	101
HEADON 1		en de la companya de			learning	COR
	antion 11				0	
	estion 11			[0]		
			of the kinetic theory of gases.			
(b)	It can be shown given by the rela		theory that the pressure p	exerted by a gas is		
	given by the rela		$0 = \frac{1}{3} \frac{Nm}{V} < c^2 > .$	rebnismed in a cylinder		
				[3]		
			ol in this equation. are nitrogen, oxygen, argon			
(c)	The gases, assumolecules are li	umed to be ideal,	, are all in thermal equilibrium	. The masses of the		
			mass of molecule/u			
		nitrogen	28			
		oxygen	32			
		argon	40			
		carbon dioxide	44			
			Fig. 3.1			
	(i) State what	is meant by then	mal equilibrium.	[1]		
	(ii) Show that t	the mean-square	speed of the molecules in air	is inversely propor-		
		e mass of each r		[3]		
			cules with the smallest root-me			
	(iv) The root-m	ean-square spee	ed of oxygen molecules is 480 nitrogen molecules.	[3]		
(d			cle of dust undergoing Brownian	motion in air. [2]		
			speed of a particle of dust, of			
(6		any assumption		[4]		
				[D03/P3/Q3]		
		ioni				
	ggested Soluti		vinatio theory of gases:			
(a)			kinetic theory of gases:			
			olecules is negligible. erfectly elastic spheres.		art el seltad.	
	3. The duration	of a collision is n	negligible compared with the til	me between collisions.		
(b)	N: number of m					
(5)	m : mass of eac		s offer it collides electricity y			
	V : volume occu	pied by the gas.				
			ne gas molecules.	eg te vresiñ oberni er Alfresservez etnitik		
(c)	(i) Two objects	are said to be in	thermal equilibrium when he they are placed together. This	eat does not flow from		
	the two object	ects are at the sa	ame temperature.	o the ortainer mier		
	(ii) $p = \frac{1}{3} \frac{Nm}{V} <$					
		are ideal gases =				
			$\Rightarrow \frac{1}{3}Nm < c^2 >= NkT$			
			$\Rightarrow \frac{1}{3}m < c^2 >= kT$			
			$\Rightarrow < c^2 > = \frac{3kT}{m}$			
		=	$\Rightarrow < c^2 > \infty \frac{1}{m}$			
	where k is	a constant.	gases are in thermal equilibr	ium.		
	T is co	nstant since the	gases are in thermal equilibr			

topic 11 Ideal Gases	Page 17
(iii) Carbon dioxide	Learning CORNER
	(a) (iii) Of the form and a
(iv) $\langle c^2 \rangle \propto \frac{1}{m} \Rightarrow \sqrt{\langle c^2 \rangle} \propto \frac{1}{\sqrt{m}} \Rightarrow \frac{\sqrt{\langle c_0^2 \rangle}}{\sqrt{\langle c_0^2 \rangle}} = \frac{\sqrt{m}}{\sqrt{m}}$	carbon dioxide has the larg-
$\Rightarrow \sqrt{\langle c_N^2 \rangle} = \sqrt{\frac{m_0}{m_N}} \times \sqrt{\langle c_0^2 \rangle} = \sqrt{\frac{32}{28}} \times 480 - 513 \text{ ms}^{-1}$	speed since $< c^2 > \infty \frac{1}{m}$.
(d) A particle of dust undergoing Brownian Motion in air will u	- Marian - M
motion due to continual bombardment with air molecules.	(iv) Since $\langle c^- \rangle \propto \frac{\dot{m}}{\dot{m}}$
(e) From part (c)(ii),	$\sqrt{\langle c^2 \rangle} \propto \frac{1}{\sqrt{m}}$
$\langle c^2 \rangle = \frac{3kT}{m}$: the molecule with the
$\Rightarrow \sqrt{\langle c^2 \rangle} = \sqrt{\frac{3kT}{m}} = \sqrt{\frac{3 \times 1.38 \times 10^{-23} \times (273 + 30)}{1.2 \times 10^{-12}}}$	largest mass has the small- est root-mean-square speed.
$\Rightarrow \sqrt{\langle c^- \rangle} = \sqrt{\frac{m}{m}} = \sqrt{\frac{1.2 \times 10^{-12}}{1.2 \times 10^{-12}}}$	= 1.02×10 ⁻⁴ ms ⁻⁴
Assumption: The temperature of the air is 30 °C.	MAN A DE TOMODE QUANTIDO SEO ESSO ESSOCIADADE. DENOS O SENTE O O SEO O VICTORIO DE SE
Barkerin and Constitution	· · · · · · · · · · · · · · · · · · ·
Question 12	THE UNION SECTION OF THE SERVICE (I) (II)
(a) Put the following terms into pairs, so that in each pair a qu	uantity is given followed
by its corresponding unit.	
coulomb	notings to oble-bren-lings to ethap esset
volt	
magnetic flux density work	
watt potential difference	
charge	Serge base units of both aides of the ed
tesla joule	[A]
(b) Explain why it is technically incorrect to define speed as	[4]
second. Include in your answer the correct statement def	ining speed. [2]
(c) Suggest why, in the SI system, it was not chosen to define	
the product of electric current and resistance.	1850 1860 and it see [2] In to recommit the (1) (4)
(d) (i) By putting each quantity into base units, show that the	e equation
pV = nRT is homogeneous.	[4]
(ii) Explain why a homogeneous equation may not neces	
(e) The pressure of an ideal gas, as derived from the kinetic	
equation	s : Western - Passmed - to M. c-
$p = \frac{1}{3} \frac{Nm}{V} < c^2 > .$	198
(i) State the meaning of each of the symbols N, m and	< C ² >. [2]
(ii) Use this equation, together with the one in (d)(i), to c	CHI VERNOUS CONTRACTOR OF THE
square speed of the oxygen molecules in air at a tem mass of one mole of oxygen molecules is 32 g.	perature of 27 °C. The [3]
(iii) Assuming the gas to behave ideally, calculate the inter- oxygen at this temperature.	nal energy of a mole of [2]
,enutrated	[D04/P3/Q1]
	internal energy = $\frac{1}{2}m < c^* > *N_A$
	$w = \sqrt{x N_2 m \times c^2} \times 1$

	topic 11 Ideal Gases		Page 18		
10	opic 11	radar dadoo			learning CORNE
5	Sugges	sted Solution:			0
(a)	(a to (a) (b)	Unit		
151.93	ASS BOR	Quantity			四 前 36 (12 (19)
		charge	coulomb		
		magnetic flux density	tesla		
		potential difference	volt		
		power	watt	dergoing Brownlan Motion in air will perten	
		work	joule		
	ond	sical quantities should b is not a physical quant ance travelled per unit time	ity but is a	terms of other physical quantities. 'Sec- unit. Hence, speed should be defined as	
	.1 . 1	a definition cann	ot he dener	erence this way could be due to the fact alised to a situation where charges are	
	mos	red from one point to a	nother in a	vacuum instead of in a resistor or any	(d) (i)
	mat	erial for which resistance	is defined.		Base units of $p = \frac{\text{Base units of fo}}{\text{Base units of an}}$
		Deep units of left hand o	ide of equati	on = (Base units of p)(Base units of V)	
	(d) (i)	Base units of left-fland-s	ide of equali	kg ms ⁻²	(∴ Pressure = Force Area)
				$= \frac{\text{kg ms}^{-2}}{\text{m}^2} \times \text{m}^3$	From table of constants,
				$= kg m^2 s^{-2}$	$R = 8.31 \text{J mol}^{-1} \text{K}^{-1}$
		m	nide of agus	ation - (Rase units of n) v (Rase units of R)	
		Base units of right-hand	-side of equa	ation = (Base units of n)×(Base units of R) ×(Base units of T)	⇒ Base units of R Base units of work
					Base units of amount of substa
				$= \text{mol} \times \frac{\text{kg ms}^{-2} \times \text{m}}{\text{mol} \times \text{K}} \times \text{K}$	×Base units of temperature
				$= kg m^2 s^{-2}$	
		Since base units of bo homogeneous.	th sides of the	he equation are the same, the equation is	
	(ii)	Mil rofractivo	ntities hence	ecessarily be correct because certain quan- onot have base units. The rightful presence cannot be ascertained through checking for	
	(e) (i)	N: number of molecule	es in the idea	al gas	pale to follows all .
	(-) (-)	m: mass of each mole			
		< c2>: mean-square-s		molecules	
	(ii)	$p = \frac{1}{3} \frac{Nm}{V} < c^2 > \Rightarrow$			
		$\Rightarrow nRT = \frac{1}{3}Nm < c^2 >$	since p	V = nRT.	
		$\Rightarrow \frac{N}{N_{A}}RT = \frac{1}{3}Nm < c^{2}$ $\Rightarrow < c^{2} >= \frac{3RT}{N_{A}m}$	> where \(\Lambda \)	I _A : Avogadro's number.	
		•	where /	$V_A m =$ mass of one mole of the gas.	
		1		27) = 484 ms ⁻¹	
	(ii			K.E. of each molecule x number of molecules	
		⇒ For one mole of o	xygen at this	temperature,	
		internal energy = $\frac{1}{2}n$	$n < c^2 > \times N$		
		internal energy = 2"	A	1 00 40-3 4042 0.74403 1	
		$=\frac{1}{2}$	$N_A m \times < c^2$	$ > = \frac{1}{2} \times 32 \times 10^{-3} \times 484^2 = 3.74 \times 10^3 \text{ J} $	

	S			learning CORNE
Overtion 12	Net algabit		man factor 6	CORNI
Question 13		a forest.re		
	mation is $pV = nHI$. Exploration is $pV = nHI$.	lain why non-SI units may be ve the unit °C.	used for p	
(b) Write down the ex	xact temperature on the	Kelvin scale of zero degree	es Celsius.	
() I allament to boo	at the world altitude recer	d for a halloon, a halium halloon	[1]	
15 000 m³ of heliur	m at a temperature of 28	d for a balloon, a helium balloor 88 K was launched from sea l	evel, where	
		e balloon, carrying a payload uilibrium. Data concerning a		
conditions are giv		umbriain. Data concerning c	апоорноно	
	sea leve	l equilibrium	100.00	
	altitude =	0 altitude = 32.0 km	THE REAL PROPERTY.	
pressure	of helium 101 kPa	0.890 kPa	TO E	
temperat		228 K	. 18	
density of	of air 1.23 kg m	0.0134 kg m ⁻³		
Calculate				
(i) the volume o	f helium at 32.0 km,		[2]	
(ii) the weight of	air displaced by the bal	lloon at equilibrium altitude,	[2]	
	tht of balloon, helium an		[1]	
	force on the balloon at		[2]	
(v) the accelerate	ion of the balloon at tak	e-off.	[2]	
		> and $pV = NkT$, derive an		S S S SET SEL
	nship between the average temperature.	ge translational kinetic energy	of a helium [1]	
		kinetic energy of one of the he		
in the balloon	n in (c), when the balloo	on is at an altitude of 32.0 km		
	amount, in mol, of heliu		[2]	
(iv) Assuming the of all the heliu	at the gas behaves as a um at equilibrium altitude	n ideal gas, calculate the kine.	etic energy [2]	luosiorassini netr
		nergy of the gas in the balloo	n as it rises	
	its internal energy.		[2]	
			N05/P3/Q2]	
Suggested Solution	n'	Section 20° 18° by on	alici agental a bria	
00		pV = 0 which cannot be true	as there are	
	ne present in an ideal g			
(b) 273.15 K				
(c) (i) Let V be volun	ne of helium at 32.0 km	ten ande i-matel had ned		
	<u>pV</u>	= constant		
			W	
	(101 kPa)(1.5 × 10 ⁴) 288			
	V	$= 1.35 \times 10^6 \text{ m}^3$		
(ii) Weight of air d				
	$= \rho.V.g$	= 40f) (0.04) 4 == 405 ti		EMBIT OFFICE
	= (0.0134)(1.35	5×10^6)(9.81) = 1.77 × 10 ⁵ N		

A. T. A.	1 Ideal Gases Pa	learning	COPAIR
(iii)	Total weight of balloon, helium and payload = Weight of air displaced = 1.77×10^5 N	awmy	CORNE
(iv)	Resultant force = Upthrust - Weight		
	F = (Weight of displaced air at sea level) - Weight		
	$= \rho.V.g - 1.77 \times 10^5$		
	$= (1.23)(15000)(9.81) - 1.77 \times 10^5$		
	$=3.99\times10^3 \text{ N}$		
(v)	F = ma		
,,,	$\Rightarrow a = \frac{F}{m} = \frac{3.99 \times 10^3 \times 9.81}{1.77 \times 10^5} = 0.221 \text{ms}^{-2}$		
(d) (i)	$\frac{1}{3}Nm < c^2 >= NkT$		
(-) (-)	$\frac{1}{2}m < c^2 >= \frac{3}{2}kT$		
	$\frac{1}{2}m < c > -\frac{1}{2}m$		
(ii)	$K.E. = \frac{3}{2}kT$		
	$= \frac{3}{2}(1.38 \times 10^{-23})(228) = 4.72 \times 10^{-21} \text{ J}$		
	A second of the	imelo ne lo tricioni seli. (1)	
· (iii	Number of moles, $n = \frac{\text{Mass}}{\text{Molar mass}}$		
	$=\frac{\rho V}{(4\times 10^{-3})}=\frac{(1.23)(15000)}{4\times 10^{-3}}$		
	$= 4.61 \times 10^6 \text{ moles}$		
(iv	Total K.E. of helium = (Total no. of helium) × (K.E. of 1 He atom)		
•	$=(n.N_A)\times K.E.$		
	= $(4.61 \times 10^6)(6.02 \times 10^{23})(4.72 \times 10^{-21})$		
	$=1.31\times10^{10} \text{ J}$		
(e) The	e increase in height changes the gravitational potential energy of the balloon intermolecular potential energy which affects internal energy of gas.	and not	
Ques	tion 14	metri al egnario rati secto	
(a) A	on amount of 1.00 mol of Helium-4 gas is contained in a cylinder at a press $.02 \times 10^5$ Pa and a temperature of 27 °C.	sure of	
(i) Calculate the volume of gas in the cylinder.	[2]	
(Hence show that the average separation of gas atoms in the cylin	nder is [2]	
	approximately 3.4 × 10 ⁻⁹ m.	[2]	
111 0			
(b) (d by a	
(the gravitational force between two Helium-4 atoms that are separated distance of 3.4 x 10⁻⁹ m, 	d by a [3]	
(the gravitational force between two Helium-4 atoms that are separated distance of 3.4 × 10⁻⁹ m, the ratio 	d by a [3]	
(the gravitational force between two Helium-4 atoms that are separated distance of 3.4 x 10⁻⁹ m, 	[3]	
(the gravitational force between two Helium-4 atoms that are separated distance of 3.4 x 10⁻⁹ m, the ratio weight of a Helium-4 atom 	[3]	
(c) (c)	the gravitational force between two Helium-4 atoms that are separated distance of 3.4 × 10 ⁻⁹ m, the ratio weight of a Helium-4 atom gravitational force between two Helium-4 atoms with separation 3.4×1 Comment on your answer to (b)(ii) with reference to one of the assumptions	[3] 0 ⁻⁹ m [2] s of the	
(c) (c)	the gravitational force between two Helium-4 atoms that are separated distance of 3.4 × 10 ⁻⁹ m, the ratio weight of a Helium-4 atom gravitational force between two Helium-4 atoms with separation 3.4×1 Comment on your answer to (b)(ii) with reference to one of the assumptions inetic theory of gases.	[3] 0 ⁻⁹ m [2]	

	c 11 Ideal Gases	Page 21	
CIII	ggested Solution:		learning CORNER
(a)	(i) $PV = nRT$		(a) (i) Temperature must be
	$(1.02 \times 10^5)V = (1.00)(8.31)(27 + 273.15)$ V = 0.0244		changed into kelvin scale $PV = nRT$.
	∴ volume = 0.0244 m³		(b) (f) $\rho = \frac{1}{3} \rho$
	(ii) Volume of 1 mole of gas = 0.0244 m ³		(ii) The average separa-
	(ii) Volume of 1 mole of gas = 0.0244 m ³ or Volume of 6.02×10 ²³ atoms of gas = 0.0244 m ³		tion between two atoms is
	Volume of 1 atom of gas = $\frac{0.0244}{6.02 \times 10^{23}}$ = 4.05 × 10 ⁻²⁶ m ³		equal to its size. If d is the separation then the volume
			of the molecule (assuming spherical) is given by
	\therefore Separation = $(4.05 \times 10^{-26})^{\frac{1}{3}} = 3.43 \times 10^{-9} \text{ m}$		$V = \frac{4}{3}\pi \left(\frac{d}{2}\right)^3$
	Mm		` ` ' '
(p)			V∝d³
	$= \frac{(6.67 \times 10^{-11})(4 \times 1.66 \times 10^{-27})(4 \times 1.66 \times 10^{-27})}{(3.4 \times 10^{-9})^2} = 2.54 \times 10^{-46}$		$d \propto (V)^{\frac{1}{3}}$
	∴ force = 2.54×10 ⁻⁴⁶ N		
	(ii) weight of a Helium-4 atom gravitational force between two Helium-4 atoms with separation 3.4×	10 ⁻⁹ m	
	$=\frac{\text{mg}}{F_{\text{G}}}$		38 = 6 9900
	$=\frac{(4\times1.66\times10^{-27})(9.81)}{2.54\times10^{-46}}$		upo-risan visit (6)
	2.54×10^{-90} $= 2.56 \times 10^{20}$		
	ratio = 2.6×10^{20}		
(c)	The assumption is that forces between atoms are negligible. So the gravitat is very small as compared to weight.	ional force	
	Duestion 15		
-	a) Explain qualitatively how molecular movement causes the pressure exe	rted by a	
(8	 Explain qualitatively how molecular movement causes the pressure exergas. 	[3]	
(8	a) Explain qualitatively how molecular movement causes the pressure exe	[3]	
(8	a) Explain qualitatively how molecular movement causes the pressure exergas. b) The density of neon gas at a temperature of 273 K and a pressure of 1	[3]	
(8	 a) Explain qualitatively how molecular movement causes the pressure exergas. b) The density of neon gas at a temperature of 273 K and a pressure of 1 Pa is 0.900 kg m⁻³. Neon may be assumed to be an ideal gas. 	.02 × 10 ⁵	
(4	a) Explain qualitatively how molecular movement causes the pressure exergas. b) The density of neon gas at a temperature of 273 K and a pressure of 1 Pa is 0.900 kg m ⁻³ . Neon may be assumed to be an ideal gas. Calculate the root-mean-square (r.m.s.) speed of neon atoms at (i) 273 K, (ii) 546 K.	.02 × 10 ⁵	
(4	a) Explain qualitatively how molecular movement causes the pressure exergas. b) The density of neon gas at a temperature of 273 K and a pressure of 1 Pa is 0.900 kg m ⁻³ . Neon may be assumed to be an ideal gas. Calculate the root-mean-square (r.m.s.) speed of neon atoms at (i) 273 K, (ii) 546 K. The calculations in (b) are based on the density for neon being 0.900	[3] .02 × 10 ⁵ [3] [2] kg m ⁻³ .	
(4	a) Explain qualitatively how molecular movement causes the pressure exergas. b) The density of neon gas at a temperature of 273 K and a pressure of 1 Pa is 0.900 kg m ⁻³ . Neon may be assumed to be an ideal gas. Calculate the root-mean-square (r.m.s.) speed of neon atoms at (i) 273 K, (ii) 546 K. c) The calculations in (b) are based on the density for neon being 0.900 Suggest the effect, if any, on the root-mean-square speed of changing the	[3] .02 × 10 ⁵ [3] [2] kg m ⁻³ . e density	
(4	Explain qualitatively how molecular movement causes the pressure exergas. The density of neon gas at a temperature of 273 K and a pressure of 1 Pa is 0.900 kg m ⁻³ . Neon may be assumed to be an ideal gas. Calculate the root-mean-square (r.m.s.) speed of neon atoms at (i) 273 K, (ii) 546 K. The calculations in (b) are based on the density for neon being 0.900 Suggest the effect, if any, on the root-mean-square speed of changing that constant temperature.	[3] .02 × 10 ⁵ [3] [2] kg m ⁻³ . e density [2]	
(4	Explain qualitatively how molecular movement causes the pressure exergas. The density of neon gas at a temperature of 273 K and a pressure of 1 Pa is 0.900 kg m ⁻³ . Neon may be assumed to be an ideal gas. Calculate the root-mean-square (r.m.s.) speed of neon atoms at (i) 273 K, (ii) 546 K. The calculations in (b) are based on the density for neon being 0.900 Suggest the effect, if any, on the root-mean-square speed of changing that constant temperature.	[3] .02 × 10 ⁵ [3] [2] kg m ⁻³ . e density	
(4	Explain qualitatively how molecular movement causes the pressure exergas. The density of neon gas at a temperature of 273 K and a pressure of 1 Pa is 0.900 kg m ⁻³ . Neon may be assumed to be an ideal gas. Calculate the root-mean-square (r.m.s.) speed of neon atoms at (i) 273 K, (ii) 546 K. The calculations in (b) are based on the density for neon being 0.900 Suggest the effect, if any, on the root-mean-square speed of changing that constant temperature.	[3] .02 × 10 ⁵ [3] [2] kg m ⁻³ . e density [2]	
(4	Explain qualitatively how molecular movement causes the pressure exergas. The density of neon gas at a temperature of 273 K and a pressure of 1 Pa is 0.900 kg m ⁻³ . Neon may be assumed to be an ideal gas. Calculate the root-mean-square (r.m.s.) speed of neon atoms at (i) 273 K, (ii) 546 K. The calculations in (b) are based on the density for neon being 0.900 Suggest the effect, if any, on the root-mean-square speed of changing that constant temperature.	[3] .02 × 10 ⁵ [3] [2] kg m ⁻³ . e density [2] .08/P4/Q2]	
(4	Explain qualitatively how molecular movement causes the pressure exergas. The density of neon gas at a temperature of 273 K and a pressure of 1 Pa is 0.900 kg m ⁻³ . Neon may be assumed to be an ideal gas. Calculate the root-mean-square (r.m.s.) speed of neon atoms at (i) 273 K, (ii) 546 K. The calculations in (b) are based on the density for neon being 0.900 Suggest the effect, if any, on the root-mean-square speed of changing that constant temperature.	[3] .02 × 10 ⁵ [3] [2] kg m ⁻³ . e density [2] .08/P4/Q2]	
(4	Explain qualitatively how molecular movement causes the pressure exergas. The density of neon gas at a temperature of 273 K and a pressure of 1 Pa is 0.900 kg m ⁻³ . Neon may be assumed to be an ideal gas. Calculate the root-mean-square (r.m.s.) speed of neon atoms at (i) 273 K, (ii) 546 K. The calculations in (b) are based on the density for neon being 0.900 Suggest the effect, if any, on the root-mean-square speed of changing that constant temperature.	[3] .02 × 10 ⁵ [3] [2] kg m ⁻³ . e density [2] .08/P4/Q2]	
(4	Explain qualitatively how molecular movement causes the pressure exergas. The density of neon gas at a temperature of 273 K and a pressure of 1 Pa is 0.900 kg m ⁻³ . Neon may be assumed to be an ideal gas. Calculate the root-mean-square (r.m.s.) speed of neon atoms at (i) 273 K, (ii) 546 K. The calculations in (b) are based on the density for neon being 0.900 Suggest the effect, if any, on the root-mean-square speed of changing that constant temperature.	[3] .02 × 10 ⁵ [3] [2] kg m ⁻³ . e density [2] .08/P4/Q2]	

pic 11 Ideal Gases Page 22	· ·
pic 11 room -	learning CORNER
uggested Solution:	(a) Pressure results from the
a) The molecules of a gas move randomly and rebound back after collisions with the walls of container. Therefore change of momentum per unit time of large number of mol- ecules define force acting per unit area.	averaging of the forces due to a very large number of collisions per unit time with the walls of container.
(i) $p = \frac{1}{3} \rho < c^2 >$	ASO 8 = emulov
$1.02 \times 10^5 = \frac{1}{3} (0.900)(\langle c^2 \rangle)$	(b) (i) Pressure of an Ideal gas
	$p = \frac{1}{3} \frac{Nm}{v} < c^2 >$
$\langle c^2 \rangle = \frac{3(1.02 \times 10^5)}{0.900} = 3.40 \times 10^5$	As $\frac{Nm}{v} = \rho$
$c_{\rm r.m.s} = \sqrt{\langle c^2 \rangle} = \sqrt{3.40 \times 10^5} = 583$	So $p = \frac{\rho}{3} < c^2 >$
∴ speed = 583 ms ⁻¹	N P AOMERICA
(ii) Since $\langle c^2 \rangle \propto T$	(ii) Average $E_K \propto T$ by relation
$\frac{\langle c_2^2 \rangle}{\langle c_1^2 \rangle} = \frac{T_2}{T_1}$	$\frac{1}{2}m < c^2 > = \frac{3}{2} nkT$
	2 2
$\frac{{}{3.40\times10^5}=\frac{546}{273}$	
$< c_2^2 > = 6.80 \times 10^5$	
$c_{\text{r.m.s}} = \sqrt{\langle c_2^2 \rangle} = \sqrt{6.80 \times 10^5} = 824.6$	
 speed = 825 ms⁻¹ (c) Since root-mean-square speed depends only on temperature so there is no effect due 	
Question 16 Some smoke particles are viewed through a microscope, as illustrated in Fig. 5.1.	OF x 0.5 = 2.6 x 10.
A CONTRACTOR OF THE PARTY OF TH	bomoo ea fiane yay e
	Classica IS
microscope	(a) Explain qualitatively (
	250
SH 1864 ha ed of bomuses all you noe	Time of 000 0 at the
The state of the s	or-icor self-oleloolist?
smoke cell	发音解 、有18
light	ni problekolo ant (a)
The particle of the property of the particle o	Lysalla eth sauga 2
Fig. 5.1	S SERGIES SENGTING IN
Brownian motion is observed.	
Brownian motion is observed. [2]	
Brownian motion is observed. (a) Explain what is meant by <i>Brownian motion</i> . (b) Suggest and explain why Brownian motion provides evidence for the movement of motion provides as assumed in the kinetic theory of gases.	
Brownian motion is observed. (a) Explain what is meant by <i>Brownian motion</i> . (b) Suggest and explain why Brownian motion provides evidence for the movement of molecules as assumed in the kinetic theory of gases. [2]	
Brownian motion is observed. (a) Explain what is meant by <i>Brownian motion</i> . (b) Suggest and explain why Brownian motion provides evidence for the movement of motion provides as assumed in the kinetic theory of gases.	

