

topic 16 Superposition Suggested Solution: (a) Wavelength refers to the distance between corresponding points in successive waveforms, such as two successive crests or two successive troughs. Frequency refers to the number of oscillations completed per unit time. (b) Speed = $\frac{\text{Distance travelled}}{\text{Time taken}}$ For a complete cycle, Distance travelled by a waveform = Wavelength Time taken = Period = Frequency :. Speed = Distance travelled | Wavelength | Time taken | Wavelength | = Wavelength × Frequency (c) (i) In a longitudinal wave, the particles vibrate in the same direction as the direction Students often confuse of travel of the wave, giving rise to regions of high density (compressions C) and of low density (rarefactions R) along the wave. position with displacement in a longitudinal wave. The position refers to the location of a particle with respect to a reference point. The displaceto the right ment refers to how far away from and the direction with respect to the equilibrium position of a particle. Note that the sketch shows the situation at one particular time i.e. it is to the left a 'snapshot' in time. The row of dots in the sketch above show the actual positions of the particles in the medium in which the progressive longitudinal wave is travelling, at a particular point in time. The arrows represent the displacements of the particles from their equilibrium positions. The graph shows the variation of the displacement of each particle with base ertiuld its position along the wave. act In a progressive longitudinal wave the regions of C and R travel at the speed of the wave. each particle vibrates about its mean position with the same amplitude and full you frequency. the regions of maximum compression are 90° phase ahead of the greatest on ugh displacement in the direction of the wave. adjacent particles are not in phase with one another. However, particles that are integral multiples of wavelengths apart are in phase with one another. (ii) In a stationary longitudinal wave: there are points where the displacement of the particle is permanently zero, called displacement nodes. the vibrations of the particles between successive displacement nodes are in phase. Hence, when one particle is at its maximum displacement, all particles are then at their maximum displacements. When a particle (other than the displacement node) has zero displacement, all particles then have zero dis placement. Other examples of progreseach particle has a different amplitude of vibration from neighboring particles. sive longitudinal waves: Particles which have the greatest amplitude are at the antinodes. 1. the wave produced on (d) An example of a progressive longitudinal wave is the sound wave, produced by a tuning a slinky when you vibrate it along the length of the slinky. fork, travelling from the tuning fork to another place. An example of a stationary longitudinal wave is the sound wave produced by blowing 2. the ultrasound waves used in ultrasonic body scanacross the mouth of a wind instrument such as the flute. ning techniques. Two sets of diffraction patterns due to the two wavelengths would be observed. The zeroth order bright fringe will be observed at the straight through position. d = separation between adjacent no. of lines per unit length $\theta_n = \sin^{-1}\left(\frac{n\lambda}{d}\right)$ where $\frac{1}{d} = 500$.

tonic	16 Superposition	Page 6	CONTRACTOR OF THE	
topic	10 Сирогровног		earning con	AIEF
	For $\lambda = 588.99 \text{ nm}$,	F mo	assistant of con	SACM
	the first order bright fringe is at:			
	$\theta_1 = \sin^{-1}(1 \times 588.99 \times 10^{-9} \times 500)$			
	= 0.0169°			
	the second order bright fringe is at :			
	$\theta_2 = \sin^{-1}(2 \times 588.99 \times 10^{-9} \times 500)$			
	$\theta_2 = \sin^2(2 \times 300.99 \times 10^{-3} \times 3000)$ = 0.0337°			
	And so on.			
	For $\lambda = 589.59$ nm,			
	the first order bright fringe is at:			
	$\theta_1 = \sin^{-1}(1 \times 589.59 \times 10^{-9} \times 500)$			
	= 0.0169°			
	i.e. it coincides with the first order bright fringe for the $\lambda = 58$	88.99 nm light		
	the second order bright fringe is at:			
	$\theta_2 = \sin^{-1}(2 \times 589.59 \times 10^{-9} \times 500)$			
	= 0.0338°			
	i.e. it is very close to the first order bright fringe for the $\lambda = 58$	8.99 nm light.		
	And so on.			
		alenaths would		
	(ii) The maximum angular separation between the light of the two wave occur between the corresponding lines for the largest order that	is observable		
	theoretically.			
	The largest order occurs where $\theta = 90^{\circ}$,		DECT OF THE	
	The largest order occurs where $v = 30$, $d\sin\theta = n\lambda$			
	a variation of the displacement of each partition with			
	For $\theta = 90^{\circ}$			
	$n_{\text{max}} = \frac{d \sin 90^{\circ}}{\lambda} = \frac{d}{\lambda}$			
	A A SW SH TO DOOGS OF LIE KNOW	ER bite O to anoty		
	For $\lambda = 588.99$ nm,			
	$n_{\text{max}} = \frac{1}{500 \times 588.99 \times 10^{-9}} = 3395$			
	¹ max 500×588.99×10-9			
	For $\lambda = 589.59$ nm,			
	and the second second to the second such such second			
	$n_{\text{max}} = \frac{1}{500 \times 589.59 \times 10^{-9}} = 3392$			
	the light of the his	vo wavelengths		
	Hence, the maximum angular separation between the light of the tw for $n = 3392$.	VO Waveleriguis	(e) (iii) The intensity of	high
	Maximum angular separation		order spectral lin	es a
	$= \sin^{-1}(3392 \times 589.59 \times 10^{-9} \times 500) - \sin^{-1}(3392 \times 588.99 \times 10^{-9} \times 500)$)-9 × 500)	lower than that for	
		COLOR TOWN OF THE COLOR	order spectral lines.	
	= 2.05°	and of the ander	Another problem that	it co
	(iii) The problem that would be likely to arise in observing the spectral line $n=3392$ is that these lines may be too faint to be observed cle	nes of the order	arise is the difficulty i	mber
f elady say i	n = 3392 is that these lines may be too faint to be observed on	carry.	fringes.	
Applies and to die	national economic de la constante de la consta	for collect and mus	g flokar stell	
0	uestion 5	chanci tendate e	10 H24 1878 HA	
		e wave. [2]		
(a				
Inscelle resident	(ii) Sketch suitable graphs, with labelled axes, for a sinusoidal way what is meant by			
	AND THE PROPERTY OF THE PROPER	daine		
	1. amplitude A,	Brite		
ngestsear	2. wavelength λ,	[4]		
	3. period T.	(3)		
				Ш

tonic 1	6 Superposition	Page 8	reemega@. 01 days
topic	o Caparpoonier		learning CORNE
(c) (i)	Resultant amplitude at X at $t = 0$ s		COKINE COKINE
	= Amplitude of wave from S, at X + Amplitude of wave	from S ₂ at X	
	= A + A = 2 A		
(ii	1. A crest from S, first meets a trough from S, when		(c) (ii) 1. S ₂ has a higher
("			frequency than S ₁ .
	$nT_1 = \left(n + \frac{1}{2}\right)T_2$		order for a trough fro
	$n\frac{1}{500} = \left(n + \frac{1}{2}\right)\frac{1}{504}$		S ₂ to meet a crest fro S ₁ at X, the wave fro
			S has to lead the way
	$n\left(\frac{1}{500} - \frac{1}{504}\right) = \frac{1}{2 \times 504}$		from S, by half a cyc
			at X.
	$n = \frac{1}{2 \times 504 \times \left(\frac{1}{500} - \frac{1}{504}\right)} = 62$	2.5	
	(500 504)		
	Hence, the time when this occurs $= nT_1$		
		105.0	
	$= 62.5 \times \frac{1}{500} = 0$	J. 125 S	
	2. Resultant amplitude at X at $t = 0.125$ s is $A - A =$	0.	avew bruch en
	- Landant to door		
	to increasing loudness to the loudest and so on. The	e sound is loudest when	
	a crest from S, meets crest from S, Silence occur	rs when a crest from S,	
	meets a trough from S ₂ and vice versa.		
(d) (i	Two waves are said to be coherent when there is a fixed p	phase difference between	
	the waves so that there are well-defined maxima and min	ima when the two waves	Superior of St.
	undergo superposition.	advent and contour list of a	(d) (ii) The varying am
(i	 Although the two sources are not coherent, they pro different frequencies which interfere in a way such that the 	oduce waves of slightly	(d) (ii) The varying am tude gives rise to var
	wave at a given point is not constant but varies with ti	me.	tions in loudness wh
	wave at a given point to not octionally		are called beats.
		DESIGNATION AND	
Que	stion 6		
1 ~		And the second of the second o	
1.		[1]	
	State what is transferred by a progressive wave.	[1]	
(b)	State what is transferred by a <i>progressive</i> wave. Two microwave sources S, and S, are situated as shown	in Fig. 5.1. The waves	ottorica tensor penti
(b)	State what is transferred by a progressive wave.	in Fig. 5.1. The waves	olandore to assembly as an established R (1) (6)
(b)	State what is transferred by a <i>progressive</i> wave. Two microwave sources S, and S, are situated as shown	in Fig. 5.1. The waves	classic a constant of the cons
(b)	State what is transferred by a <i>progressive</i> wave. Two microwave sources S, and S, are situated as shown	in Fig. 5.1. The waves	otastu di nasseranti di selata di se
(b)	State what is transferred by a <i>progressive</i> wave. Two microwave sources S ₁ and S ₂ are situated as shown emitted by the two sources are in phase and are polarise Y	in Fig. 5.1. The waves and in the same plane.	Control of
(b)	State what is transferred by a <i>progressive</i> wave. Two microwave sources S ₁ and S ₂ are situated as shown emitted by the two sources are in phase and are polarise Y	in Fig. 5.1. The waves and in the same plane.	constraint (in the constraint of the cons
(b)	State what is transferred by a <i>progressive</i> wave. Two microwave sources S ₁ and S ₂ are situated as shown emitted by the two sources are in phase and are polarise Y	in Fig. 5.1. The waves	otorius a nomerous ni espaliano il un (in montrato (i) (ii)
(b)	State what is transferred by a <i>progressive</i> wave. Two microwave sources S ₁ and S ₂ are situated as shown emitted by the two sources are in phase and are polarise Y S ₁ M P C	in Fig. 5.1. The waves and in the same plane.	control transcription in the control of the control
(b)	State what is transferred by a <i>progressive</i> wave. Two microwave sources S ₁ and S ₂ are situated as shown emitted by the two sources are in phase and are polarise Y S ₁ P	in Fig. 5.1. The waves and in the same plane.	otacho 2 te concentrată ini estalicate A (I) (II) mocetulă (I) (II)
(b)	State what is transferred by a <i>progressive</i> wave. Two microwave sources S ₁ and S ₂ are situated as shown emitted by the two sources are in phase and are polarise Y S ₁ M P C	in Fig. 5.1. The waves and in the same plane.	otacho 2 to concreto 3 ini estalicato 9 (i) (f) moceturo 1 (f)
(b)	State what is transferred by a <i>progressive</i> wave. Two microwave sources S ₁ and S ₂ are situated as shown emitted by the two sources are in phase and are polarise Y S ₁ M P C	in Fig. 5.1. The waves and in the same plane.	otarbo 2 to see mos 8 In established # (I) (II) mostration # (II) mostration # (II)
(b)	State what is transferred by a <i>progressive</i> wave. Two microwave sources S ₁ and S ₂ are situated as shown emitted by the two sources are in phase and are polarises. Y S ₁ M S ₂ 3.2 m X	in Fig. 5.1. The waves and in the same plane.	otario 2 minorio 23 in estados 6 mil (d) montro 2 (d)
(b)	State what is transferred by a <i>progressive</i> wave. Two microwave sources S ₁ and S ₂ are situated as shown emitted by the two sources are in phase and are polarise Y S ₁ M S ₂ 3.2 m X A microwave detector is placed on a line XY which is para	in Fig. 5.1. The waves and in the same plane. 5.1. The waves and in the same plane. (not to scale) Fig. 5.1 allel to, and 3.2 m from,	Cantro & Homoropus III (III) (
(b)	State what is transferred by a <i>progressive</i> wave. Two microwave sources S ₁ and S ₂ are situated as shown emitted by the two sources are in phase and are polarise Y S ₁ M S ₂ A microwave detector is placed on a line XY which is paratheline joining S ₂ and S ₃ . M is the midpoint of the line join	in Fig. 5.1. The waves and in the same plane. 5.0 cm (not to scale) Fig. 5.1 allel to, and 3.2 m from, ning S, and S ₂ . The line	Cantro & Homercons & In Control of the Control of t
(b)	State what is transferred by a <i>progressive</i> wave. Two microwave sources S ₁ and S ₂ are situated as shown emitted by the two sources are in phase and are polarise Y S ₁ M S ₂ 3.2 m X A microwave detector is placed on a line XY which is para	in Fig. 5.1. The waves and in the same plane. 5.1 — 15.0 cm 5.1 — 15.0 cm (not to scale) Fig. 5.1 allel to, and 3.2 m from, hing S ₁ and S ₂ . The line e detector produces an	Control to the control of the contro
(b)	State what is transferred by a progressive wave. Two microwave sources S ₁ and S ₂ are situated as shown emitted by the two sources are in phase and are polarise Y S ₁ M S ₂ 3.2 m X A microwave detector is placed on a line XY which is parathe line joining S ₁ and S ₂ . M is the midpoint of the line join from M perpendicular to the line S ₁ S ₂ meets XY at O. Thoutput which is proportional to the displacement of the way	in Fig. 5.1. The waves and in the same plane. 5.1 5.0 cm (not to scale) Fig. 5.1 allel to, and 3.2 m from, ning S ₁ and S ₂ . The line e detector produces an ave.	Control to the control of the contro
(b)	State what is transferred by a <i>progressive</i> wave. Two microwave sources S ₁ and S ₂ are situated as shown emitted by the two sources are in phase and are polarise Y S ₁ M S ₂ 3.2 m X A microwave detector is placed on a line XY which is paratheline joining S ₁ and S ₂ . M is the midpoint of the line join from M perpendicular to the line S ₁ S ₂ meets XY at O. Thoutput which is proportional to the displacement of the way with only S ₂ switched on, the change with time of the determinant o	in Fig. 5.1. The waves and in the same plane. 5.0 cm (not to scale) Fig. 5.1 allel to, and 3.2 m from, ning S ₁ and S ₂ . The line e detector produces an ave. ctor output measured at	otanto 2 transcript 2 in estalloso 8 (i) (ii) crookub (ii) crookub (iii)
(b)	State what is transferred by a progressive wave. Two microwave sources S ₁ and S ₂ are situated as shown emitted by the two sources are in phase and are polarise Y S ₁ M S ₂ 3.2 m X A microwave detector is placed on a line XY which is parathe line joining S ₁ and S ₂ . M is the midpoint of the line join from M perpendicular to the line S ₁ S ₂ meets XY at O. Thoutput which is proportional to the displacement of the way	in Fig. 5.1. The waves and in the same plane. 5.0 cm (not to scale) Fig. 5.1 allel to, and 3.2 m from, ning S ₁ and S ₂ . The line e detector produces an ave. ctor output measured at	otante 2 to see constitution of the constituti
(b)	State what is transferred by a <i>progressive</i> wave. Two microwave sources S ₁ and S ₂ are situated as shown emitted by the two sources are in phase and are polarise Y S ₁ M S ₂ 3.2 m X A microwave detector is placed on a line XY which is paratheline joining S ₁ and S ₂ . M is the midpoint of the line join from M perpendicular to the line S ₁ S ₂ meets XY at O. Thoutput which is proportional to the displacement of the way with only S ₂ switched on, the change with time of the determinant o	in Fig. 5.1. The waves and in the same plane. 5.0 cm (not to scale) Fig. 5.1 allel to, and 3.2 m from, ning S ₁ and S ₂ . The line e detector produces an ave. ctor output measured at	otante 2 to see constitution of the constituti
(b)	State what is transferred by a <i>progressive</i> wave. Two microwave sources S ₁ and S ₂ are situated as shown emitted by the two sources are in phase and are polarise Y S ₁ M S ₂ 3.2 m X A microwave detector is placed on a line XY which is paratheline joining S ₁ and S ₂ . M is the midpoint of the line join from M perpendicular to the line S ₁ S ₂ meets XY at O. Thoutput which is proportional to the displacement of the way with only S ₂ switched on, the change with time of the determinant o	in Fig. 5.1. The waves and in the same plane. 5.0 cm (not to scale) Fig. 5.1 allel to, and 3.2 m from, ning S ₁ and S ₂ . The line e detector produces an ave. ctor output measured at	countries to entercounts in established in (ii) construit (ii) construit (iii)
(b)	State what is transferred by a <i>progressive</i> wave. Two microwave sources S ₁ and S ₂ are situated as shown emitted by the two sources are in phase and are polarise Y S ₁ M S ₂ 3.2 m X A microwave detector is placed on a line XY which is paratheline joining S ₁ and S ₂ . M is the midpoint of the line join from M perpendicular to the line S ₁ S ₂ meets XY at O. Thoutput which is proportional to the displacement of the way with only S ₂ switched on, the change with time of the determinant o	in Fig. 5.1. The waves and in the same plane. 5.0 cm (not to scale) Fig. 5.1 allel to, and 3.2 m from, ning S ₁ and S ₂ . The line e detector produces an ave. ctor output measured at	countries to extend public and established in the countries of the countri
(b)	State what is transferred by a <i>progressive</i> wave. Two microwave sources S ₁ and S ₂ are situated as shown emitted by the two sources are in phase and are polarise Y S ₁ M S ₂ 3.2 m X A microwave detector is placed on a line XY which is paratheline joining S ₁ and S ₂ . M is the midpoint of the line join from M perpendicular to the line S ₁ S ₂ meets XY at O. Thoutput which is proportional to the displacement of the way with only S ₂ switched on, the change with time of the determinant o	in Fig. 5.1. The waves and in the same plane. 5.0 cm (not to scale) Fig. 5.1 allel to, and 3.2 m from, ning S ₁ and S ₂ . The line e detector produces an ave. ctor output measured at	otante 2 to see caps 2 in estations 8 (i) (ii) more turb (ii) more turb (iii)

opic 16	Superposition		Page 1	-	arming CORNER
***	1				ato minerativa sent
(11)	$V = \frac{\lambda}{T}$	$(8.38 \times 10^{-11}) = 0.025 \text{ n}$	n = 2.5 cm (shown)	(b)	the electromagnetic spectrum
			om S ₁ and S ₂ is approximately		and hence travel at 3.0 × 108 ms ⁻¹ .
	$\frac{1.5}{6.0}\lambda = \frac{1}{4}\lambda.$		the noth difference of the	ne	
	waves from S_1 a first maximum, the separation of O to 1λ . Hence, it	and S_2 must equal m who he detector must be move and P in order for the paramust be moved a further	a maximum, the path difference of the reference is an integer. Hence, to get the data further distance that is 3 times the difference to increase proportional of distance of 3×5 cm = 15 cm.	ne	
(iv)	The first maximum	um occurs at a distance	of 15 + 5 = 20 cm from O along C	Y.	
(,		dsin θ	= nl		
	where d is the s	separation between S, a	nd S ₂ .		
	For the first ma				
		$d = \frac{n\lambda}{\sin\theta} = \frac{1 \times 2.5}{0.00}$	$5 \times 10^{-2} = 0.4 \text{ m}$		
		$a = \sin\theta$	0.2		
		200	2 mm) was to 2 to observe	_	
Ques	tion 7		intensity at P of wave from S _g *		
Data	about stars are a	almost all provided from	measurements involving waves in the	he	
electr	omagnetic spectr	um.		Sand Street	
(a) N	Name five regions	of the electromagnetic span for each of your chosel	pectrum and give the order of magnitung regions.	(5)	
(b) S	State two features	s of electromagnetic wave	es which are common across the who	ole [2]	remount a a dee no bisliki(vi)
(c)	(c) A diffraction grating having 300.0 lines per millimeter is used to observe monochromatic light from the hydrogen spectrum, it is found that the first order diffraction pattern occurs at an angle of 8.385°. Calculate the wavelength of the light. [3]				
(4)	When an astrono	mer observes the hydrog g angle to that in (c) is 8	en spectrum in light from a distant s	tar,	
	(i) Calculate the	e wavelength in this case).		
	(ii) Calculate the	e percentage change wh	ich has occurred in the wavelength.	THE LA	
	(iii) Suggest wh	y this change in waveler	gth is called red shift.	[6]	
		utransmor with	shes to change the method in (c) so to angles quoted in (c) and (d). Sugn	as	
	to increase the o	illerence between the th	to unglos quality	to be no	ent :
93 40	(i) two ways in	which the method may	encounter.		
	(ii) two difficulti	es the astronomer might		[4]	
IN CASE			[D01/P3	3/Q3]	
5 0 0 5 g dths , sea	get your ann		de)* of wave from S. (Amolitude's at F		

topic	16 Superposition	Page 11	-	ACTICIONE AND CONTROL OF
Sug	gested Solution:		le	arning CORNER
(a) [Region of electromagnetic spect	rum Order of magnitude of wavelength		
1	ultraviolet	10 ⁻⁹ m		
1	visible	10 ⁻⁷ m		
	infra-red	10 ⁻⁷ ~ 10 ⁻⁴ m		
1	micro-waves	$10^{-4} \sim 10^{-1} \mathrm{m}$		
1	radio waves	1 ~ 10 ³ m		
1 2	. The waves can travel in a vacu	f 3.00 × 10 ⁸ ms ⁻¹ .	(b)	All electromagnetic waves travel at the speed of light and can travel in a vacuum.
	$\sin \theta = n\lambda$ where d : separation be	etween the lines on the grating.		
($d = \frac{1}{300 \text{ lines per mm}} = \frac{10^{-3}}{300} \text{ m}$			
	iven $\theta = 8.385^{\circ}$ when $n = 1$,			
		13 90		
	$\lambda = \frac{d\sin\theta}{n} = \frac{10^{-3}}{300} \times \frac{5}{300}$	$\frac{\sin(8.385^\circ)}{1} = 486.1 \times 10^{-9} \text{ m}$		
(4) () If $\theta = 8.388^{\circ}$ when $n = 1$,			
		gth, bringing the value of the wavelength closer trum. Hence, the change in wavelength is called	(d)	(iii) In the visible light spectrum, red has the longest wavelength. Hence, the in-
(e) (i) Two ways in which the method	s in (c) may be changed:		crease in wavelength is called 'red shift'.
	Use a diffraction grating ha	ving a greater number of lines per millimetre so an be larger, so as to reduce the fractional error		Called Ted STIIR.
		gle for the first order diffraction pattern, measure or diffraction pattern for both the monochromatic stant star.		
(1	Two difficulties the astronomer r	night encounter:		
	1. The intensity of the diffracti	on pattern may fall.		
	Higher order diffraction path sured accurately.	terns may be too dim for the angles to be mea		

		learning CORNER
A sound detector is moved along a line AB that is particular that $S_1N = S_2N$.		
The sound waves from S ₁ and S ₂ have frequency 2	2.80 kHz and speed 336 ms ⁻¹ .	
(i) Show that the wavelength of the waves is	12.0 cm.	
(ii) The detector, when placed at N, indicates a it is moved from N to a point P, the intenvalues. At P, the distance S,P is 372 cm	a maximum intensity of sound. As sity varies between high and low	
Determine, with suitable explanation,	LXILIHH	
1. whether the intensity of sound produc	ced at P is high or low,	
the number of high intensity regions the not include the maximum at N.		
(iii) The intensity of sound produced at N by S, the intensity at N, in terms of I, when both S	1 2	
and one only directly	[D02/P2/Q5]	
Suggested Solution:		
(a) Coherent sources are sources that produce wa	aves of a constant phase difference.	
a. m. v=f1		
$\lambda = \frac{V}{f} = \frac{336}{2.80 \times 10^3} = 0.12 \text{ m}, \text{ i.e. } 12 \text{ cm}.$		
(ii) 1. Path difference between S ₁ P and S ₂ P	= 50 011	
	$=\frac{30}{12}\lambda$	
	$=2.5\lambda$	
Since the path difference is not an integral r destructive interference occurs at P and to	are attending of the	
 Since S₂P - S₁P = 2.5λ, then there are N and P, excluding that at N. 	e two regions of high intensity betwee	n
: Number = 2		
(iii) Intensity ∝ (Amplitude)²	police o alla co a diferiore de side	(e) There are much greater n
If the amplitude of S ₁ alone = amplitude of at N when both S ₁ and S ₂ are producing	$f S_2$ alone = A, then amplitude of sour sound = $A + A = 2A$	
Intensity at $N = (2A)^2$		
$= 4A^2$ $= 4I$		Capping 9
in .	25P0 (23 (13 P2 22 23 24 2	neam a servi nistratt (s)
Question 10		use measured liquid dwT (8)
(a) Explain what is meant by		
(i) the diffraction of a wave,	· .	41
(ii) the principle of superposition.		4]
(b) A narrow beam of coherent light of waveled diffraction grating having 4.00 x 10 ⁵ lines p	01 11101101	
Determine the number of orders of diffrof the zero order.	acted light that are visible on each sic [3]

topic 16	Superposition Page 15	ilippoparau2, 21	Maria Maria
(ii)	A student suspects that there are two wavelengths of light in the incident beam, one at 589.0 nm and the other at 589.6 nm.	learning	CORNER
	State the order of diffracted light at which the two wavelengths are most likely to be distinguished.	in Fig. 3.1.	
	 The minimum angular separation of the diffracted light for which two wavelengths may be distinguished is 0.10°. Make calculation to determine whether the student can observe the two wavelengths as separate images. [4] 		
	And Solutions		
(a) (i)	sted Solution: Diffraction refers to the bending and spreading of waves when they pass through an aperture or go around an obstacle. It is observed when the wavelength of the wave is comparable to the width of the aperture.		
(ii)	The <i>Principle of Superposition</i> state that the resultant displacement at any point when two waves travel through a medium is the sum of the separate displacements due to the two waves.		
	$d\sin\theta = n\lambda$		
	If $\theta = 90^\circ$,		
	$n = \frac{d\sin\theta}{\lambda} = \frac{\frac{1}{4.00 \times 10^5} \sin 90^\circ}{589 \times 10^{-9}} = 4.24$		
	Hence, the number of orders that are visible on each side of the zero order is 4.		
(ii)	1. The fourth order	(b) (ii) 1. The	
	$2. d\sin\theta = n\lambda$	spreading increase	
	For the 4th order belonging to 589.0 nm light,	likely that the	fourth order
	$\sin \theta_1 = \frac{n\lambda}{d}$	lines of the two	
	$\theta_1 = \sin^{-1}(4 \times 589 \times 10^{-9} \times 4.00 \times 10^5) = 70.46^\circ$	the other resp	ective orders.
	For the 4th order belonging to 589.6 nm light,		
	$\sin \theta_2 = \frac{n\lambda}{d}$		
	$\therefore \theta_2 = \sin^{-1}(4 \times 589.6 \times 10^{-9} \times 4.00 \times 10^5) = 70.62^\circ$		
	Angle subtended by the two lines $= \theta_2 - \theta_1$		
	= 70.62° - 70.46°	Section 7	
	= 0.16° > 0.10°		
	Since this angle is larger than the minimum angular separation that may be distinguished, the student can observe the two wavelengths as separate images.		
Questi	on 11		
the	e wavelength of sound in air is of the order of one million times greater than a wavelength of light in air. Describe how you could check this statement perimentally.	ricos teament - buol timo envi Temo a costifi	
(b) (i)	Show how the principle of superposition of waves can be used to explain the formation of two-source interference fringes. [3]		
(ii)	Two-source interference fringes using light can only be obtained if light from the two sources is coherent. Explain	Move the microston of the CRO short	
	 the meaning of the term <i>coherent</i>, why, in practice, interference fringes can be seen only if light from a single 		
	source is split into two. [2]		

16 Superposition	Page 22
topic 16 Superposition	Learning CORNE
(a) State the two conditions that must be satisfied f be zero.	for the intensity of sound at M to [2]
(b) The speed of sound in air is 330 m s ⁻¹ .	
The frequency of the sound from S ₁ and S ₂ is ir of minima that will be detected at M as the freq to 4.0 kHz.	ncreased. Determine the number quency is increased from 1.0 kHz [4]
is illuminated 2 Deservices 3 Observices	[J09/P21/Q5]
Suggested Solution:	(a) Condition for destruct
(a) 1. Path difference (S ₂ M - S ₁ M) between waves multiple of half wavelength.	
2. The amplitudes or intensities of both waves	are same at M. occur when crest of a wave fall on the trough
(b) Distance $S_2M = \sqrt{(S_1M)^2 + (S_1S_2)^2}$	second to cancel out e other effect by super-posi
	principle.
$=\sqrt{(100)^2+(80)^2}$	Phase difference
= 128 cm	= odd multiple of π
Path difference = $S_2M - S_1M$	Path difference
= 128 – 100 = 28 cm	= odd multiple of $\frac{\lambda}{2}$.
wavelength at 1.0 kHz of sound wave, $\lambda = \frac{v}{f}$	
	$\frac{330}{.0\times10^3}$ = 0.33 m = 33 cm.
wavelength at 4.0 kHz of sound wave, $\lambda = \frac{1}{2}$	4.0×10 ³ = 0.0825 M = 8.25 GH.
Path difference for minima = $(2n+1)\frac{\lambda}{2}$	diver the region XY which is detected by moving
$\Rightarrow 28 = (2n+1)\frac{\lambda}{2}$	
put $n = 0$, $28 = (2(0) + 1)\frac{\lambda}{2} \implies \lambda = 56 \text{ c}$	Checkfeel 15
put $n = 1$, $28 = (2(1) + 1)\frac{\lambda}{2} \implies \lambda = 18.7$	
put $n = 2$, $28 = (2(2) + 1)\frac{\lambda}{2} \implies \lambda = 11.2$	
put $n = 3$, $28 = (2(3) + 1)\frac{\lambda}{2} \implies \lambda = 8.0$	
Since wavelength 56 cm and 8.0 cm are not within the is obtained for wavelengths 11.2 cm and 18.7 cm. T	range of 8.25 cm to 33 cm, so minima Therefore two minima are detected.
but appells of absolut manufa	
	archierdry to enbuffly a merolist sylen
	A infloophone M is situated a distance 100 cm from S, at

