

topic 13 Thermal Properties of Materials	Page 3	Marie Maries	and got
topie ze	The sales of the s	learning	COPNER
(d) (i) Density = $\frac{\text{Mass}}{\text{Volume}}$ \Rightarrow Mass = Density × Volume		8	O MILLER
= 0.903×850 = 768 kg			(1) (4)
(ii) Heat energy required = mcθ			
$= 768 \times 1000 \times (390 - 275) = 8.83 \times 10^7 \text{ J}$	ergy of the water	The internal en	
of white the water increase and the potential			
(iii) If $\rho \propto \frac{1}{T}$, $\frac{\rho_1}{\rho_2} = \frac{T_2}{T_1}$			
$\rho_1 = \frac{T_2}{T_1} \times \rho_2 = \frac{390}{275} \times 0.903 = 1.28 \text{ kgm}^{-3}$			
(iv) Volume = $\frac{\text{Mass}}{\text{Density}} = \frac{768}{1.28} = 600 \text{ m}^3$			
(e) Increase in volume of the air when it expands as temperature rises fro	om 275 K to		
390 K = 850 - 600 = 250 m³.			
Work done on the atmosphere = $p\Delta V$ = $(1.03 \times 10^5) \times 250 = 2.58 \times 10^7 \text{ J}$			
	7 .		
(f) Increase in internal energy of the air = $8.83 \times 10^7 - 2.58 \times 10^7 = 6.25 \times 10^7$	10′ J		
Question 3	equal hatapol		
Some gas is contained in a cylinder by means of a moveable piston, as il	llustrated in		
Fig. 5.1.	tel instanco le gr		
gas	met instanou is :		
moveable			
piston	mas a melnes of		
Fig. 5.1	Moley Kemio a		
cylinder	not be all emption		
State how, for this mass of gas, the following changes may be achieved.			
(a) increase its gravitational potential energy.	[1]	im-	
(b) decrease its internal energy.	[1]		
(c) increase its elastic potential energy	[1]		
10	[J02/P2/Q5]	98	
Suggested Solution:		(a) P.E = mgh	
(a) Raise the height of the cylinder above the earth.		Reducing h	would reduce
(b) Reduce the temperature of the mass of gas by moving the piston to the	e right so that	P.E.	
the volume of the gas increases, leading to a decrease in the root-mean- of the gas molecules.	square speed	(b) Internal energy for an ideal g	
(c) Push the moveable piston to the left to increase the pressure of the	gas through	ioi aii ideai g	as.
compression of the gas.			9-5
Question 4	Segment Massachus		
Some water in a saucepan is boiling.	FER GIVERS		
(a) Explain why	mel Inclanco e o		
(i) external work is done by the boiling water,	gras izsterio lia		
(ii) there is a change in the internal energy as water changes to sto			
(b) By reference to the first law of thermodynamics and your answers in (a), show that		
thermal energy must be supplied to the water during the boiling proc	ess. [2] [J02/P4/Q2]		
	1-021. 11.02		

	ested Solu	Properties of Materials				learning	CORNE
	As the wat	er boils, water molecules leave ir. In so doing, the boiling water rounding the water.	the wate	er surface a e external v	and enter the sur- work on the atmo-		(9 (6)
(i	i) The international and potent	all energy of the water is the sun ial energies associated with the the separations of the water n increase, leading to an increase	water m	increase	and the potential		
е	ecording to	the First Law of Thermodyna a system equals the heat suppostem, W.	amics, a olied to t	n increase	e in the internal		
to	increase he	$\Delta U = \Delta Q +$ work is done by the boiling water, at must be supplied to the wate y to do work against the surrou	Hence, i	n order for the boiling	the internal energy process to supply		
Que	estion 5	. Vilo	1 > 60.73		XXX and C		
-		place a tick (✓) against those clacreasing.	hanges v	vhere the ir	nternal energy of [2]		
	a stone falli	ing at constant temperature ng under gravity in a vacuum			www.u stinko s		
		orating at constant temperature wire at constant temperature Fig. 2.1					
(b)	and then add	shes to harden a sample of pure ure contains 5.0% silver by weight ds the correct weight of silver. The data of Fig. 2.2 to calculate the nal mixture is at the melting poi	he initial ne initial t	temperatu emperature	re of the silver is	Marieo	
		Example 1	gold	silver	mene istinetop isn	olleflyster en eg se	
		melting point / K specific heat capacity (solid or liquid) / J kg ⁻¹ K ⁻¹	1340	1240	energy. Sontial energy	Inment all settos; q citalle all easin	
		specific latent heat of fusion / kJ kg ⁻¹	628	105		metholes had	
		Fig. 2.2		.6180 o	s everes absolves e	ct to tripled ent s	
(c)	Suggest a si the gold in (uitable thermometer for the mea b).	suremen	t of the initi	al temperature of [1] [J03/P4/Q2]	atomatest of the Leap will be confi Leap will be confidence	
Sug	gested Sol	ution:	885 PL 88	f sagaint	of figures of some	(a) Since, ΔU	= ΔE, +
(a)	water freezing	ng at constant temperature	T			$\Delta E_{\kappa} = \text{Cons}$	stant due to
		ng under gravity in a vacuum			pillott of a	stant tempe $\Delta E_n = Inc$	rature. reases due
		rating at constant temperature wire at constant temperature		¥	yd enob	breaking increase in between pa	of bonds the separa
						nal energy	(ΔU) increa

years and so	on the same apparent the			
topic 1.	3 Thermal Pro	operties of Materials	Page 6	di ameni Alaes
	the heating proc		o that the readings on the ammeter	Learning CORNE
(a) B	y reference to Fi	ig. 2.2.		han e dans
		e at which the heater is swi	tched on,	/ 88 \
			me = minutes [1]	
(ii	i) determine the	mass of ice melted in 1.0 m	ninute with swip has blooks as an	
,		heater switched off,		
		heater switched on.	F=(81,009-045) 869 8 [2]	
(b) T	he readings of the	e ammeter and the voltmeter in (a) to calculate a value for	r are 5.2 A and 11.5 V respectively. or the specific latent heat of fusion	
of	f ice.		11	
			usion = J kg ⁻¹ [3]	0.810660
			value for the specific latent heat of ere used to replace the ice in the	a soul and the attention of
	innel.	Tullectly from a freezer we	[2]	
			[D04/P2/Q2]	
Sugge	ested Solution	n: *		
(a) (i)	Time = 3.8 min			
. (ii)	1. Mass of ic	e melted in 1.0 minute with	heater switched off	
	= Gradient	t of straight portion of graph	before 3.8 minutes	
	$=\frac{0.01}{3.8}=0.$			109994
	2. Mass of ic	e melted in 1.0 minute with	heater switched on	
	= Gradient	t of straight portion of graph	after 3.8 minutes	
	$=\frac{0.108-}{13.2-}$	$\frac{0.064}{10.0} = 0.0138 \text{ kg}$		
(b) WI	nen the heater w	as switched off,	in the beaker at regions time interests in of a	
	O - m/ whore	Q_s : heat from surrounding.		
	$\frac{ds}{t} = \frac{m}{t}$ whe	ere $\frac{m_1}{t}$ = 0.0026 kg min ⁻¹ .		
Wh	nen the heater w	as switched on,		
	0 00 1			
	$Q_s + IVt = m_2/$	m.		
	$\frac{U_s}{t} + IV = \frac{m_2}{t} I$	where $\frac{m_2}{t} = 0.0138 \text{ kg min}^2$	•	(c) If ice taken directly from
	$\Rightarrow \frac{m_1}{t} f + IV =$			freezer were used,
			×10 ⁵ J kg ⁻¹	$Q_{\rm s} = m_1(c\Delta\theta + l)$
	$\left(\frac{m_2}{t}\right)^{\frac{1}{2}}$	$\frac{m_1}{t}$ = $\frac{5.2 \times 11.5}{\frac{0.0138}{60} \frac{0.0026}{60}}$ = 3.20		$\frac{Q_s}{t} = \frac{m_1}{t} (c\Delta\theta + t)$
				$\therefore \frac{Q_s}{t} + IV = \frac{m_2}{t} (c\Delta\theta + f)$
(c) If ic	ce taken directly	from a freezer were used ins	tead of melting ice, then heat energy	1 1 1 1
WO	uld be needed to e calculated value	e for the specific latent heat of	ice to 0 °C before the ice could melt. fusion would be greater than its true	$\Rightarrow c\Delta\theta + f = \frac{IV}{\frac{m_2 m_1}{t}}$
val	ue if ice taken di		sed and assumed to be the same as	t t
me	elting ice.			$\Rightarrow l = \frac{lV}{\frac{m_2 - m_1}{t}} - c\Delta\theta$
				11

	13 Thermal P	3,571,30			Page 7	learning	CORNER
Que	stion 7						
(a)		as a swim	nming pool enclosure	e, water at 30 °C and wa	ater vapour,		
			of movement and the ame temperature.	e speed of molecules in	n water and [4]		
	(ii) State what i	s meant b	by the internal energy	y of a system.	[2]		
	and water v	apour at t	he same temperatur		[3]		
	of a substar	nce is great	ater than its specific	e specific latent heat of latent heat of fusion.	[2]		
	water. During a sof 2.7 m ³ s ⁻¹ . The power from the S	summer me canal is the summer is the summer is the sum	onth, the town is sup 51 km long and 9.2 r	canal supplies the tow oplied with water at an a m wide. In the daytime, area by the surface of as not change.	the average		
	by the town	. 111	with to seem to the	lied from the reservoir	[1]		
	of water is a supplied fro	2.26×10^6	J kg-1. Calculate th	e specific latent heat of he rate at which water	vaporisation needs to be [4]	g cac of word likel on primocal	
	(iii) Suggest two Indicate the mented.	ways in v problems	which the loss of wat that could arise if y	er from the canal could rour suggestions were	be reduced. to be imple- [4] [N06/P3/Q2]	i wedira, hoat la d hai your arewor to ed agelan whetho	(3)
(a) (water	pat	ttern of movement random	speed of molecules	an neewied a	stance), gestions peak ants) ni operado ce	10 (A)
	water vapo	our	random	fast	a move apail,		
(expressed as of particles of iii) The Internal e energy of wa	the sum matter. energy of v ter vapour	of a random distribution water vapour is highers because of greater	y the state of the syste tion of kinetic and pote er than water due to gre er spacing between the	eater potential bir particles.	(a) (iii) Kinetic e and water val due to constar	
(intermolecula	r potential	energies compared	er because of overcon to specific latent heat respective change of	of fusion. The		
(b) (i) Some water i	s evapora	ted to keep the tem	perature constant.			
(d by Sun = Rate of w 10^3)(9.2) = x (2.26 × 10.20)				
	•		$x = 190 \text{ kgs}^-$				
(iii) Soluti	on	Р	roblem			
	1. Cover th	e canal		pleasant and possibly pensive			
	2. Increase flow of v			eepen the gradient will expensive			

topic 13 Thermal Properties of Materials	Page 10	- 201001
	learning of	ORNER
(i) Deduce that the ratio	9 mile	
speed of trolley of mass 800 g	phrious incredition are assessed to the auto honein of our	
speed of trolley of mass 2400 g	1.2.1.	
is equal to 3.0.	[2]	
(ii) Use the answers in (a)(ii) and (b)(i) to calculate t	the speed of the trolley of [3]	
mass 800 g.	[J08/P2/Q2]	
	[0001.27.02]	
= prings		
Suggested Solution:	(a) (i) Do not forget to	o channe
(a) (i) Gradient = $\frac{4.0 \times 10^{-2} - 0}{32 - 0} = 1.25 \times 10^{-3}$	compression from	
32 - 0 Spring constant = Reciprocal of gradient of compres	metre (m).	
	(ii) Full explanati	
weight / N graph.	derive/deduce	
$\Rightarrow K = \frac{1}{\text{gradient}} = \frac{1}{1.2 \times 10^{-3}} = 800 \text{ Nm}^{-1}$	quantity.	
	Also	
(ii) Strain energy = Area of graph along with compressi	ion axis $E = \frac{1}{2} Kx^2$	
$=\frac{1}{2}(3.5\times10^{-2})(28)=0.49 \text{ J}$	$=\frac{1}{2}(800)(3.5\times1)$	10-2)
	2 = 0.49 J	
(b) (i) By principle of conservation of linear momentum		
Momentum before = Momentum after cutting thread	(b) (i) Momentum	before
$O = (800)(-v_1) + (2400)(v_2)$	collision is zero	
$800 v_1 = 2400 v_2$	trolleys because initially at rest.	uley are
$\frac{v_1}{v_2} = \frac{2400}{800} = 3.0$		
v ₂ 800		
(ii) energy stored in spring = kinetic energy of trolleys	(b) (ii) By principle	of conser-
	vation of energy $(100 \times 10^{-3})(v_0)^2$ energy of the spring	
$0.49 = \frac{1}{2} (800 \times 10^{-3}) (v_1)^2 + \frac{1}{2} (24)^{-3} (v_2)^2 + \frac{1}{2} (24)^{-3} (v_1)^2 + \frac{1}{2} (24)^{-3} (v_1)^2 + \frac{1}{2} (24)^{-3} (v_2)^2 + \frac{1}{2} (24)^{-3} (v_1)^2 + \frac{1}{2} (24)^{-3} (v_2)^2 + \frac{1}{2} (24)^{-3} (v_1)^2 + \frac{1}{2} (24)^{-$	to dio cum or initial	
$0.98 = (800 \times 10^{-3})(v_1)^2 + (2400 \times 10$	$(10^{-3})(\frac{V_1}{a})^2$ of both trolleys.	
$0.98 = (800 \times 10^{-3})v_1^2 + (267 \times 10^{-3$		
$v_1 = \sqrt{\frac{0.98}{(800 + 267) \times 10^{-3}}} = 0.9$	958 ≈ 0.96 ms ⁻¹	
$\sqrt{(800 + 267) \times 10^{-3}}$		
		mmai

topic 13 The	ermal Properties of Mater	rials	Page 13	
		to the heater. When the liquid porated in 5.0 minutes is mea		Learning CORNEL
	ver of the heater is then char the two power ratings are g	nged and the procedure is repriven in Fig. 3.2.	peated.	
	power of heater / W	mass evaporated in 5.0 minutes / g		
	50.0 70.0	6.5	194. 2 194. 104. 198.	
	L. Library	g. 3.2	Sibn) Grebero	
(i) Sug	gest		Set Settlement and	
2.		the liquid is boiling at a cons is determined for two differen		
(ii) Calc	culate the specific latent heat	of vaporisation of the liquid.	[3]	statistics he saying
		NO NO DESCRIPTIONES DE LOS UNIDAS.	[000/1 4/00]	
Suggested :		ha kanda kakaran malasalar		
the se	eparation between them.	he bonds between molecules and do work against atmospheric particles.		
expan		do work against autiospheric p	ressure during	
		in the mass of water per unit he surrounding (atmosphere)		
(ii) ∆Q =	(Am)/			
	$(P_2 - P_1)t = (m_2 - m_1)l_v$			1 00 = WA = 130 J
	$(70.0 - 50.0)(5.0 \times 60) = (13)$	3.6 - 6.5)/ _v		
⇒	$l_{\rm v} = \frac{6000}{7.1} = 845$			
	specific latent heat of vapo	prisation = 845 J g ⁻¹		
Question 13				
	at is meant by the internal e		[2]	
(b) The first		be represented by the equation	on	
	$\Delta U =$	q+w.		
State wha	at is meant by each of the fo	ollowing symbols.		
+∆ <i>U</i>				
+q				
+W			[3]	
	nt of 0.18 mol of an ideal gas s shown in Fig. 2.1.	s is held in an insulated cylinde	r fitted with a	

