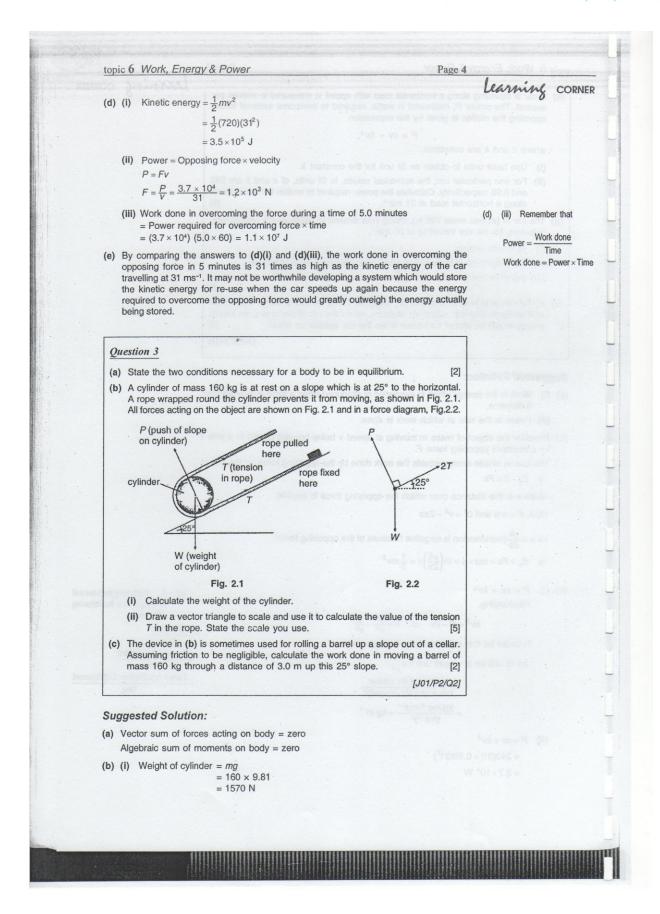
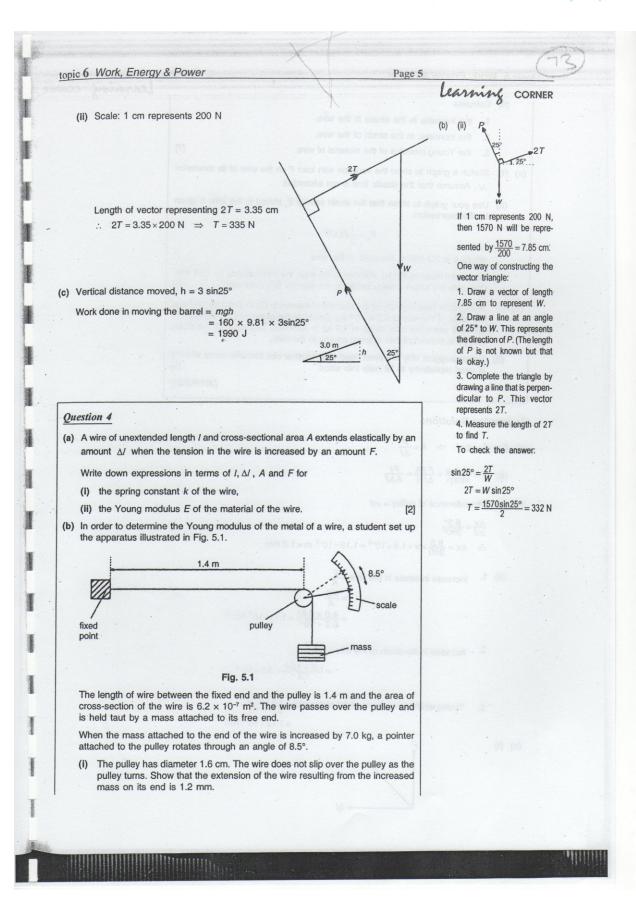
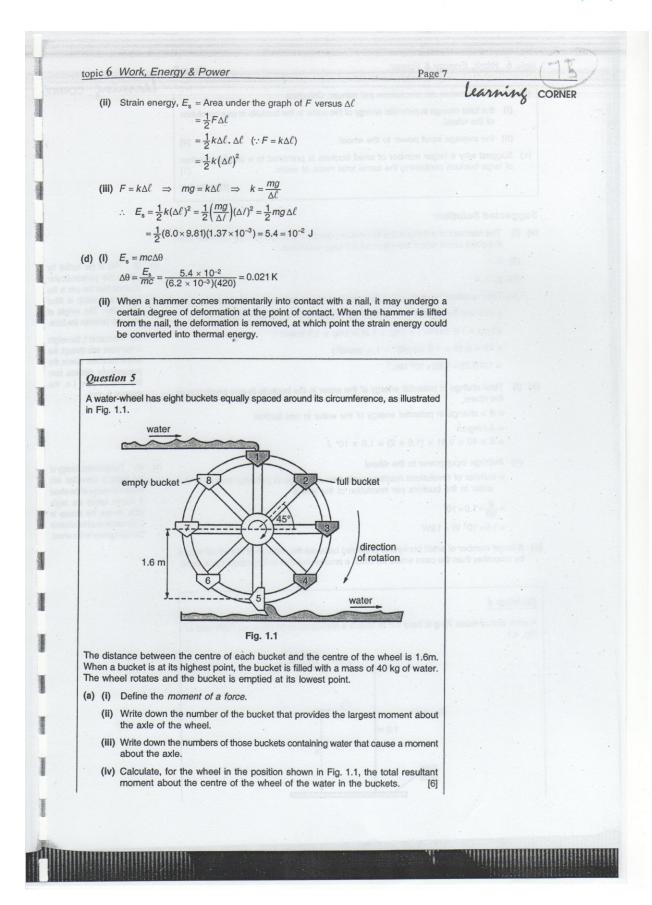
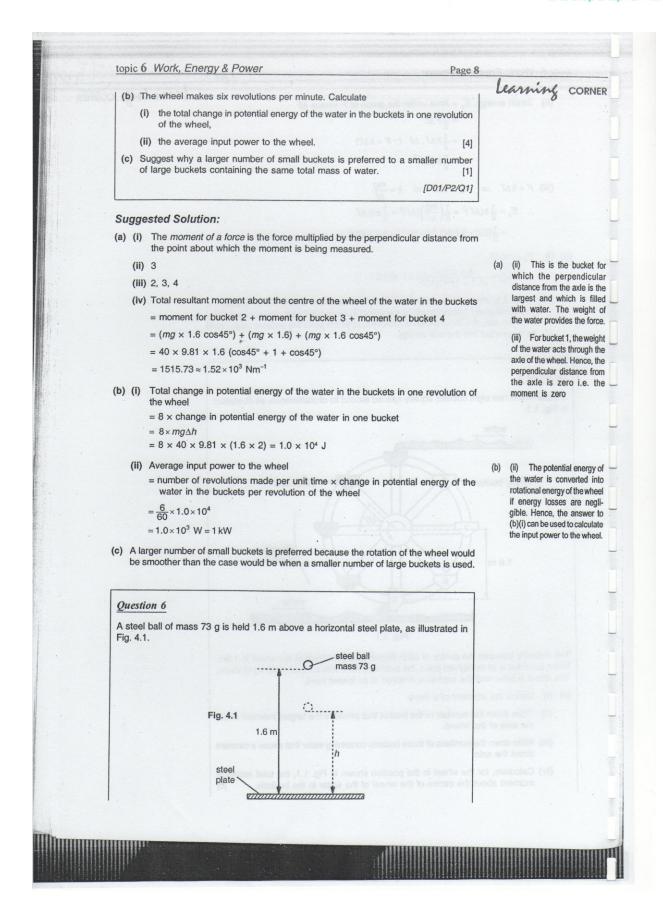


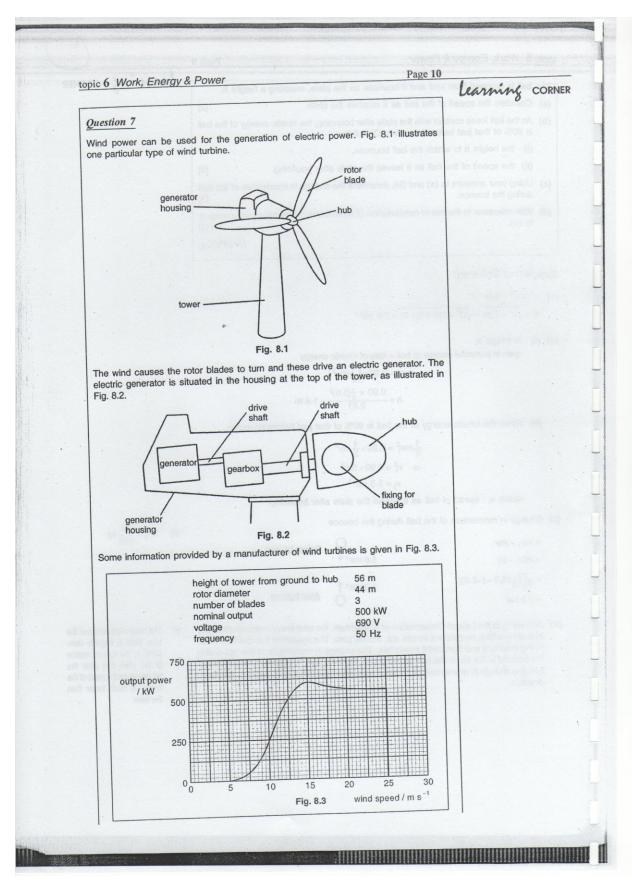
	topic 6 Work, Energy & Power	Page 2	1	
	(b) Work done by a force F in displacing a mass m by displacement s is g	given by	learning	CORNE
	$W = F \times s$ $= ma \times s$			
	Displacement $s = \frac{1}{2}(v_i + v_t)t$ where v_i : initial velocity, v_t : velocity at ti Acceleration $a = \frac{v_t - v_t}{t}$	ime t		
	$\Rightarrow W = ma \times s$			
	$= m\left(\frac{v_t - v_i}{t}\right) \times \frac{1}{2}(v_i + v_t)t$	de notinitale		
	$=\frac{1}{2}m(v_t-v_i)(v_i+v_t)$			
	$=\frac{1}{2}mv_t^2 - \frac{1}{2}mv_i^2$			
	2 2	e de din pr		
	This shows that the work done on the mass equals the change in kine of the mass where the kinetic energy is given by $E_{\rm K} = \frac{1}{2}mv^2$.	etic energy		
	(c) (i) Kinetic energy at A = $\frac{1}{2}mv^2$			
			No manda	
	$=\frac{1}{2}(90)(15^2)$			
	=1.0×10 ⁴ J			
	(ii) Loss of potential energy between A and B = mgh		A A	
	$= (90)(9.81)(4.0)$ $= 3.5 \times 10^3 \text{ J}$			
	(iii) Gain in kinetic energy between A and B = Loss of potential energy between	AID		
	$\frac{1}{2}mv^2 - 1.0 \times 10^4 = 3.5 \times 10^3$	en AandB		
			Calculat	
	$V = \sqrt{\frac{(1.0 \times 10^4 + 3.5 \times 10^3) \times 2}{90}} = 17$	ms ⁻¹		
	The speed at B is 17 ms ⁻¹ .			
	(d) (i) $P = FV$			
	$F = \frac{P}{V} = \frac{240}{15} = 16 \text{ N}$		(d) (i) The forward	force is
	10		given by $\frac{P}{V}$. S	ince the
	(ii) The total resistive force is proportional to the speed of the cyclis when the cyclist travels at a higher constant speed, the total resis experienced increases as well. In order to maintain a higher consta the cyclist needs to provide greater power.	itive force int speed,	cyclist is travelling stant speed, the to tive force equals the force in magnit	g at con- otal resis- ne forward-
	(e) When chemical energy is transformed into kinetic energy, there will be an in kinetic energy and hence an increase in the speed. Since the cyclist is at constant speed, there is no increase in kinetic energy due to trans from chemical energy to kinetic energy. Instead, chemical energy is train into rotational kinetic energy of the bicycle wheels and other forms of energy as heat energy.	travelling formation	opposite in direct that the net horizon acting on the cy bicycle is zero.	ntal force
20 8319 brewny	The second secon	9810 (2 x sps		
ent ente	Question 2	g ent for legal		
n beeg	(a) Define			
engant s	(i) work,	avom echale		
ed of a	(ii) power.	[3]		
	(b) By reference to equations of motion, derive an expression for the kinetic $E_{\rm k}$ of an object of mass m moving at speed ν .	energy [4]		


			(1)
1	topic 6 Work, Energy & Power	Page 3	- Constant
3888	(c) A car is travelling along a horizontal road with speed v, second. The power P, measured in watts, required to copposing the motion is given by the expression	measured in metres per overcome external forces	NER .
	$P = cv + kv^3,$	L301×2.0	
	where c and k are constants.	(ii) Pourse - Operation beautiful (iii)	
	(i) Use base units to obtain an SI unit for the constant	nt k.	
	(ii) For one particular car, the numerical values, in SI and 0.98 respectively. Calculate the power required along a horizontal road at 31 ms ⁻¹ .	units, of <i>c</i> and <i>k</i> are 240 to enable the car to travel [6]	
	(d) The car in (c) has mass 720 kg. Using your answer to calculate, for the car travelling at 31 ms ⁻¹ ,	(c)(ii) where appropriate,	
	(i) its kinetic energy,	and the gar	
emiT ×	(ii) the magnitude of the external force opposing the r	notion of the car,	
	(iii) the work done in overcoming the force in (ii) during	[5]	
	(e) By reference to your answers to (d), suggest, with a re worthwhile to develop a system whereby, when the cenergy would be stored for re-use when the car speed	ar slows down, its kinetic	
		[J00/P3/Q2]	
	Suggested Solution:	prig a sot Atempoeu surginano cen sur amane (le)	
	 (a) (i) Work is the energy which is expended or produced v a distance. 	when a force is exerted over	
	(ii) Power is the rate at which work is done.	enois to rise of Silvers	
	(b) Consider the object of mass m moving at speed v being by a constant opposing force F.		
	The loss in kinetic energy equals the work done by the c	pposing force off the object	
	$\Rightarrow E_k - 0 = Fs$	nert and a second and a second and a second as a secon	
	where s is the distance over which the opposing force	s applied.	
	Now, $F = ma$ and $0^2 = v^2 - 2as$		
	i.e $a = \frac{V^2}{2s}$ (acceleration is negative because of the opposition)	sing force)	
	$\Rightarrow E_{k} = Fs = ma \times s = m\left(\frac{v^{2}}{2s}\right)s = \frac{1}{2}mv^{2}$	W (weight of cylinder)	
	(c) (i) $P = cv + kv^3$	(c) (i) In deriving the bas	e unit
	Rearranging,	for power, use the foll	
	$kV^3 = P - cV \implies k = \frac{P}{V^3} - \frac{C}{V^2}$	relationship:	
		$P = \frac{\text{Work done}}{\text{Time}}$	
	In order for this equation to be homogeneous,	Force × Displacement	
	an SI unit for $k = $ base unit for $\frac{P}{V^3}$	Time	
	$= \frac{\text{base unit for power}}{\text{base unit for (speed)}^3}$	$= \frac{Mass \times Acceleration \times Displace}{Time}$	ement
	$= \frac{\text{kg.ms}^{-2}.\text{m.s}^{-1}}{(\text{ms}^{-1})^3} = \text{kg m}^{-1}$	Subjected Schrider	
	(ii) $P = cv + kv^3$	(A) Vector both or torong award on trody + 2010	
	$= 240(31) + 0.98(31^3)$	Algebraic sum of momenta on body a zero	
	= 240(31) + 0.30(31) = 3.7×10^4 W	(b) (i) Walght of cylindar = ran	
	-0.7 ^ 10 17	15/0 X 3.61	

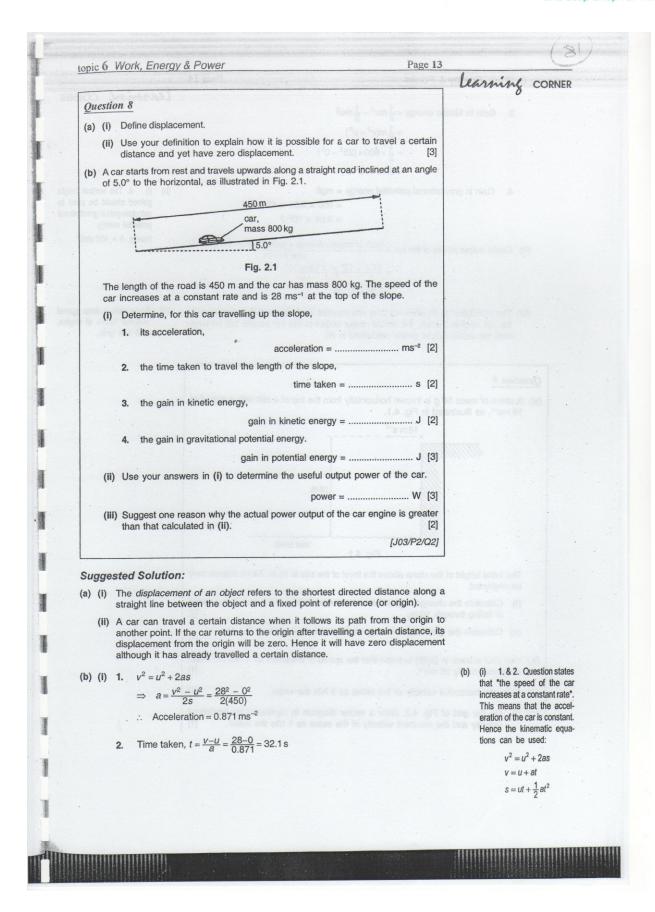


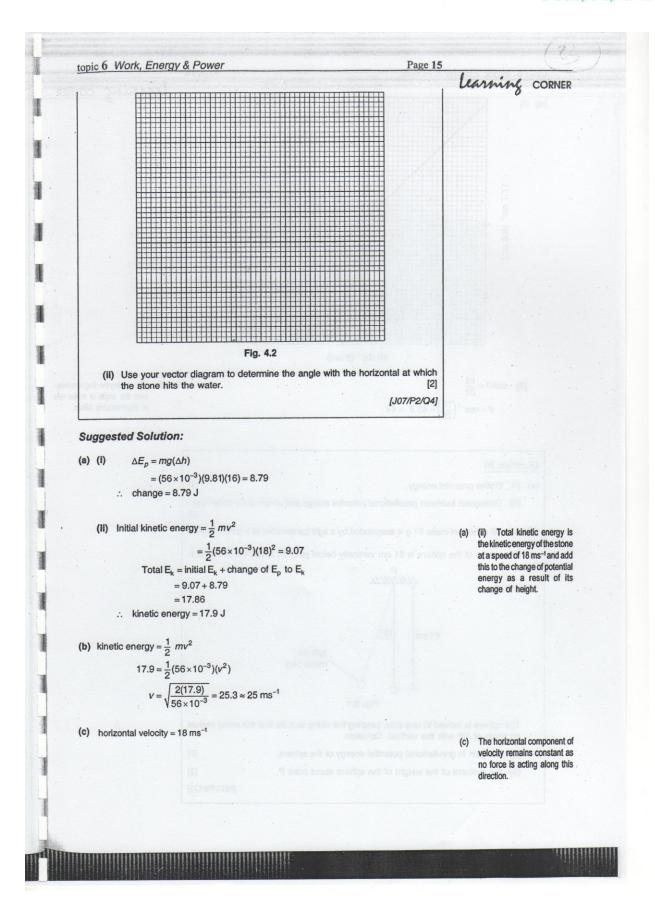

(ii) Calculate 1. the increase in the stress in the wire, 2. the increases, in the strain of the wire, 3. the Young modulus of the material of wire. (c) (i) Sketch a graph to show the variation with load F on the wire of its extension Δ . Assume that the elastic limit is not exceeded. (ii) Use your graph to show that the strain energy E_c stored in the wire is given by the expression $E_c = \frac{1}{2}k(\Delta I)^2,$ where k is the spring constant of the wire. (iii) For a total mass of 8.0 kg attached to the wire, the wire extends by 1.37 mm. Calculate the strain energy stored in the wire for this extension. (iii) Use specific heat capacity of the material of the wire in (b) in 420 J kgr $^{1/4}$ C and the mass of the wire is 0.2×10^{-7} kg. Calculate the change in temperature of the wire when the total mass of 0.0 kg is removed, assuming all the strain energy is convented/into thermal energy in the wire. (iii) Hence suggest why the steel head of a harmner can become warm when it is used repeatedly to hit nails into wood. (ii) $F = k\Delta I \Rightarrow k = \frac{F}{\Delta I}$ (iii) $F = \frac{1}{8100} = \frac{F}{A} = \frac{FI}{A}$ (iii) $F = \frac{1}{8100} = \frac{1}{A} = \frac{FI}{A} = \frac{FI}{A}$ (iii) $F = \frac{1}{8100} = \frac{1}{A} = \frac{FI}{A} = \frac{FI}{A}$ (iii) Increase in stress in the wire $= \frac{F}{A} = \frac{FI}{A} = \frac{FI}{A}$		Nork Energy & Power Page 6	Senanti Ename
(ii) Calculate 1. the increase in the stress in the wire, 2. the increase, in the strain of the wire, 3. the Young modulus of the material of wire. (c) (i) Sketch a graph to show the variation with load F on the wire of its extension A . Assume that the elastic limit is not exceeded. (ii) Use your graph to show that the strain energy E_s stored in the wire is given by the expression $E_s = \frac{1}{2}k(\Delta I)^2,$ where k is the spring constant of the wire. (iii) For a total mass of 8.0 kg attached to the wire, the wire extends by 1.37 mm. Calculate the strain energy stored in the wire for this extension. (d) (i) The specific heat capacity of the material of the wire in (b) in 420 4 kg··· 14· and the mass of the wire is 6.2 × 10° kg. Calculate the change in temperature of the wire when the total mass of 8.0 kg is removed, assuming all the strain energy is converted/rinot thermal energy in the wire. (ii) Hence suggest why the steel head of a hammer can become warm when it is used repeatedly to hit nails into wood. (a) (i) $F = k\Delta I \implies k = \frac{F_I}{\Delta I}$ (ii) $F = \frac{stress}{strain} \frac{EIA}{\Delta II} - \frac{FI}{A\Delta I}$ (b) (i) Circumference of pulley = πd $\frac{\Delta x}{A} = \frac{8.5^\circ}{360^\circ} \times \pi \times 1.6 \times 10^{-2} = 1.19 \times 10^{-3} \text{ m} \approx 1.2 \text{ mm}$ (iii) 1. Increase in stress in the wire = $\frac{F_A}{6.2 \times 10^{-7}} = 1.11 \times 10^8 \text{ km}^{-2}$ 2. Increase in the strain of the wire = $\frac{\Delta X}{1.2 \times 10^{-3}} = 8.6 \times 10^{-4}$ 3. Young modulus of the material of the wire = $\frac{1.11 \times 10^8}{8.0 \times 10^4} = 1.13 \times 10^{11} \text{ Nm}^{-2}$	topic 0	VOIK, Ellergy & T OWO!	Learning CORN
1. the increase in the stress in the wire, 2. the increase, in the strain of the wire, 3. the Young modulus of the material of wire. (c) (1) Sketch a graph to show the variation with load F on the wire of its extension ΔI . Assume that the elastic limit is not exceeded. (ii) Use your graph to show that the strain energy E_s stored in the wire is given by the expression $E_s = \frac{1}{2} K(\Delta I)^2,$ where k is the spring constant of the wire. (iii) For a total mass of 8.0 kg attached to the wire, the wire extends by 1.37 mm. Calculate the strain energy stored in the wire for this extension. (ii) The specific heat capacity of the material of the wire in (b) in 420 J kgr ⁻¹ Kr ⁻¹ and the mass of the wire is 6.2 × 10 ⁻³ kg. Calculate the change in temperature of the wire when the total mass of 3.0 kg is removed, assuming all the strain energy is converted into thermal energy in the wire. (ii) Hence suggest why the steel head of a hammer can become warm when it is used repeatedly to hit nalls into wood. (a) (i) $F = k\Delta I \implies k = \frac{F}{\Delta I}$ (ii) $F = \frac{\text{stress}}{\pi G} = \frac{FI}{360^5}$ $\Rightarrow \Delta x = \frac{3.5}{360^5} \times \pi \times 1.6 \times 10^{-2} = 1.19 \times 10^{-3} \text{ m} \approx 1.2 \text{ mm}$ (ii) 1. Increase in stress in the wire $= \frac{E}{A}$ $= \frac{-m_0}{4}$ $= \frac{4.0 \times 9.81}{6.2 \times 10^{-3}} = 1.11 \times 10^{3} \text{ Nm}^{-2}$ 2. Increase in the strain of the wire $= \frac{\Delta X}{1.4} = \frac{-m_0}{8.6 \times 10^{-4}} = 1.13 \times 10^{-1} \text{ Nm}^{-2}$ (c) (i) $F = \frac{E}{A} $	(ii)	Calculate	0
2. the increase, in the strain of the wire, 3. the Young modulus of the material of wire. (c) (1) Sketch a graph to show the variation with load F on the wire of its extension ΔI . Assume that the elastic limit is not exceeded. (ii) Use your graph to show that the strain energy E , stored in the wire is given by the expression $E_s = \frac{1}{2}k(\Delta I)^2,$ where k is the spring constant of the wire. (iii) For a total mass of 8.0 kg attached to the wire, the wire extends by 1.37 mm. Calculate the strain energy stored in the wire for this extension. [6] (d) (i) The specific heat capacity of the material of the wire in (b) in 420 J kg ⁻¹ K ⁻¹ and the mass of the wire is 6.2×10^{-3} kg. Calculate the change in temperature of the wire when the total mass of 8.0 kg is removed, assuming all the strain energy is converted into thermal energy in the wire. (ii) Hence suggest why the steel head of a hammer can become warm when it is used repeatedly to hit nails into wood. (iii) $F = k\Delta I \Rightarrow k = \frac{F}{\Delta I}$ (iii) $F = \frac{Stress}{\delta I} = \frac{FIA}{\Delta III} = \frac{FI}{A\Delta I}$ (b) (i) Circumference of pulley = πd $\frac{\Delta x}{\pi d} = \frac{8.5^{\circ}}{360^{\circ}} \times \pi \times 1.6 \times 10^{\circ} = 1.19 \times 10^{\circ3} \text{ m} \approx 1.2 \text{ mm}$ (ii) 1. Increase in stress in the wire = $\frac{F}{A} = \frac{mg}{A}$ $= \frac{mg}{A}$ $= \frac{4.0 \times 9.81}{1.4} = 1.11 \times 10^{8} \text{ Nm}^{\circ}^{\circ}^{\circ}$ 2. Increase in the strain of the wire = $\frac{Ax}{L} = \frac{1.11 \times 10^{8}}{6.2 \times 10^{-4}} = 8.6 \times 10^{-4}$ 3. Young modulus of the material of the wire $\frac{Ax}{8.6 \times 10^{-4}} = 1.13 \times 10^{11} \text{ Nm}^{-2}$	(")		
3. the Young modulus of the material of wire. [7] (e) (i) Sketch a graph to show the variation with load F on the wire of its extension ΔI . Assume that the elastic limit is not exceeded. (ii) Use your graph to show that the strain energy E_s stored in the wire is given by the expression $E_s = \frac{1}{2} k(\Delta I)^2,$ where k is the spring constant of the wire. (iii) For a total mass of 8.0 kg attached to the wire, the wire extends by 1.37 mm. Calculate the strain energy stored in the wire for this extension. [6] (d) (i) The specific heat capacity of the material of the wire in (b) in 420 J kg^-1K^-1 and the mass of the wire is 6.2×10^{-9} kg. Calculate the change in temperature of the wire with the total mass of 8.0 kg is removed, assuming all the strain energy is convented into thermal energy in the wire. (ii) Hence suggest with the steel head of a hammer can become warm when it is used repeatedly to hit nails into wood. (ii) $F = k\Delta I \implies k = \frac{F}{\Delta I}$ (iii) $F = \frac{F}{360} = \frac{FI}{\Delta I/I} = \frac{FI}{A\Delta I}$ (b) (i) Circumference of pulley = πd $\frac{\Delta x}{\Delta x} = \frac{8.5^{\circ}}{360} = \frac{FI}{360} = \frac{FI}{360}$ $\Rightarrow \Delta x = \frac{8.5^{\circ}}{360} \times \pi \times 1.6 \times 10^{-2} = 1.19 \times 10^{-3} \text{ m} \times 1.2 \text{ mm}$ (ii) 1. Increase in stress in the wire = $\frac{FA}{A} = \frac{mg}{A} = \frac{4.0 \times 9.81}{6.2 \times 10^{-2}} = 1.11 \times 10^{8} \text{ Nm}^{-2}$ 2. Increase in the strain of the wire = $\frac{4X}{L} = \frac{1.11 \times 10^{9}}{1.4} = 8.6 \times 10^{-4}$ 3. Young modulus of the material of the wire $\frac{1.11 \times 10^{9}}{8.6 \times 10^{-4}} = 1.13 \times 10^{11} \text{ Nm}^{-2}$			
(c) (i) Sketch a graph to show the variation with load F on the wire of its extension ΔI . Assume that the elastic limit is not exceeded. (ii) Use your graph to show that the strain energy E , stored in the wire is given by the expression $E_s = \frac{1}{2} k(\Delta I)^2,$ where k is the spring constant of the wire. (iii) For a total mass of 8.0 kg attached to the wire, the wire extends by 1.37 mm. Calculate the strain energy stored in the wire for this extension. (ii) (i) The specific heat capacity of the material of the wire in (b) in 420 J kg ⁺ K ⁺ and the mass of the wire is 6.2×10^{-3} kg. Calculate the change in temperature of the wire when the total mass of 8.0 kg is removed, assuming all the strain energy is converted into thermal energy in the wire. (ii) Hence suggest why the steel head of a harmer can become warm when it is used repeatedly to hit nails into wood. (iii) $F = k\Delta I \Rightarrow k = \frac{F}{\Delta I}$ (iii) $F = \frac{stress}{strain} = \frac{FIA}{\Delta III} = \frac{FI}{\Delta II}$ (b) (i) Circumference of pulley = πd $\frac{\Delta x}{\pi d} = \frac{8.5^{\circ}}{380^{\circ}}$ $\Rightarrow \Delta x = \frac{8.5^{\circ}}{380^{\circ}} \times \pi \times 1.6 \times 10^{-2} = 1.19 \times 10^{-3} \text{ m} \approx 1.2 \text{ mm}$ (ii) 1. Increase in stress in the wire = $\frac{F}{A}$ $= \frac{mg}{A}$ $= \frac{4.0 \times 9.81}{6.2 \times 10^{-7}} = 1.11 \times 10^{8} \text{ Nm}^{-2}$ 2. Increase in the strain of the wire = $\frac{AL}{1.2 \times 10^{-3}} = 8.6 \times 10^{-4}$ 3. Young modulus of the material of the wire = $\frac{1.11 \times 10^{9}}{8.6 \times 10^{-4}} = 1.13 \times 10^{11} \text{ Nm}^{-2}$	19 3	3 the Young modulus of the material of wire. [7]	
(ii) Use your graph to show that the strain energy E_s stored in the wire is given by the expression $E_s = \frac{1}{2}k(\Delta I)^2,$ where k is the spring constant of the wire. (iii) For a total mass of 8.0 kg attached to the wire, the wire extends by 1.37 mm. Calculate the strain energy stored in the wire for this extension. [6] (d) (1) The specific heat capacity of the material of the wire in (b) in 420 J kg ⁻¹ K ⁻¹ and the mass of the wire is 6.2×10^{-3} kg. Calculate the change in temperature of the wire when the total mass of 8.0 kg is removed, assuming all the strain energy is converted into thermal energy in the wire. (ii) Hence suggest why the steel head of a hammer can become warm when it is used repeatedly to hit nails into wood. (ii) $F = k\Delta I \implies k = \frac{F}{\Delta I}$ (ii) $F = \frac{1}{8} \frac{1}{8} \frac{1}{A} = \frac{FI}{A} \frac{1}{A} 1$	(c) (i)	Sketch a graph to show the variation with load F on the wire of its extension	
$E_s = \frac{1}{2}k(\Delta I)^2,$ where k is the spring constant of the wire. (iii) For a total mass of 8.0 kg attached to the wire, the wire extends by 1.37 mm. Calculate the strain energy stored in the wire for this extension. [6] (d) (i) The specific heat capacity of the material of the wire in (b) in 420 J kg^+ K^+ and the mass of the wire is 6.2 × 10^3 kg. Calculate the change in temperature of the wire when the total mass of 8.0 kg is removed, assuming all the strain energy is converted into thermal energy in the wire. (ii) Hence suggest why the steel head of a harmer can become warm when it is used repeatedly to hit nails into wood. (iii) $F = k\Delta I \implies k = \frac{F}{\Delta I}$ (iii) $F = \frac{\text{stress}}{\text{strain}} = \frac{FIA}{\Delta III} = \frac{FI}{A\Delta I}$ (b) (i) Circumference of pulley = πd $\frac{\Delta x}{\pi d} = \frac{8.5^\circ}{360^\circ}$ $\Rightarrow \Delta x = \frac{8.5^\circ}{360^\circ} \times \pi \times 1.6 \times 10^{-2} = 1.19 \times 10^{-3} \text{ m} \approx 1.2 \text{ mm}$ (ii) 1. Increase in stress in the wire = $\frac{F}{A}$ $= \frac{mg}{6.2 \times 10^3} = 1.11 \times 10^8 \text{ Nm}^{-2}$ 2. Increase in the strain of the wire = $\frac{\Delta L}{8.6 \times 10^{-4}} = 1.13 \times 10^{11} \text{ Nm}^{-2}$ 3. Young modulus of the material of the wire = $\frac{1.11 \times 10^8}{8.6 \times 10^{-4}} = 1.13 \times 10^{11} \text{ Nm}^{-2}$	(ii)	Use your graph to show that the strain energy $E_{\rm s}$ stored in the wire is given	
where k is the spring constant of the wire. (iii) For a total mass of 8.0 kg attached to the wire, the wire extends by 1.37 mm. Calculate the strain energy stored in the wire for this extension. [6] (d) (i) The specific heat capacity of the material of the wire in (b) in 420 J kg ⁻¹ K ⁻¹ and the mass of the wire is 6.2×10^{-3} kg. Calculate the change in temperature of the wire when the total mass of 8.0 kg is removed, assuming all the strain energy is converted into thermal energy in the wire. (ii) Hence suggest why the steel head of a hammer can become warm when it is used repeatedly to hit nails into wood. [5] Suggested Solution: (a) (i) $F = k\Delta I \implies k = \frac{F}{\Delta I}$ (ii) $F = \frac{stress}{stress} = \frac{F/A}{sM^{-1}} = \frac{F/I}{A\Delta I}$ (b) (i) Circumference of pulley = πd $\frac{\Delta x}{\pi d} = \frac{8.5^{\circ}}{360^{\circ}}$ $\Rightarrow \Delta x = \frac{8.5^{\circ}}{360^{\circ}} \times \pi \times 1.6 \times 10^{-2} = 1.19 \times 10^{-3} \text{ m} \approx 1.2 \text{ mm}$ (ii) 1. Increase in stress in the wire = $\frac{F}{A}$ $= \frac{mg}{6.2 \times 10^{-3}} = 1.11 \times 10^{8} \text{ Nm}^{-2}$ 2. Increase in the strain of the wire = $\frac{\Delta x}{1.4}$ $= \frac{1.2 \times 10^{-3}}{1.4} = 8.6 \times 10^{-4}$ 3. Young modulus of the material of the wire $= \frac{1.11 \times 10^{8}}{8.6 \times 10^{-4}}$ $= 1.13 \times 10^{11} \text{ Nm}^{-2}$	on anneand		
(iii) For a total mass of 8.0 kg attached to the wire, the wire extends by 1.37 mm. Calculate the strain energy stored in the wire for this extension. [6] (d) (i) The specific heat capacity of the material of the wire in (b) in 420 J kg ⁻¹ K ⁻¹ and the mass of the wire is 6.2 \times 10 ⁻³ kg. Calculate the change in temperature of the wire when the total mass of 8.0 kg is removed, assuming all the strain energy is converted-into thermal energy in the wire. (ii) Hence suggest why the steel head of a hammer can become warm when it is used repeatedly to hit nails into wood. [5] Suggested Solution: (a) (i) $F = k\Delta I \implies k = \frac{F}{\Delta I}$ (ii) $F = \frac{\text{stress}}{360^{\circ}} = \frac{FIA}{\Delta II} = \frac{FI}{A\Delta II}$ (b) (i) Circumference of pulley = πd $\frac{\Delta x}{\pi d} = \frac{8.5^{\circ}}{360^{\circ}}$ $\Rightarrow \Delta x = \frac{8.5}{360} \times \pi \times 1.6 \times 10^{-2} = 1.19 \times 10^{-3} \text{ m} \approx 1.2 \text{ mm}$ (ii) 1. Increase in stress in the wire = $\frac{F}{A}$ $= \frac{mg}{A}$ $= \frac{4.0 \times 9.81}{6.2 \times 10^{-2}} = 1.11 \times 10^{8} \text{ Nm}^{-2}$ 2. Increase in the strain of the wire = $\frac{\Delta x}{1.4}$ $= \frac{1.2 \times 10^{-3}}{1.4} = 8.6 \times 10^{-4}$ 3. Young modulus of the material of the wire = $\frac{1.11 \times 10^{8}}{8.6 \times 10^{-4}}$ $= 1.13 \times 10^{11} \text{ Nm}^{-2}$ (c) (1)	03/1-199	of hornes	
Calculate the strain energy strice in the wire in (b) in 420 J kg ⁻¹ K ⁻¹ and the mass of the wire is 6.2 × 10 ⁻³ kg. Calculate the change in temperature of the wire when the total mass of 8.0 kg is removed, assuming all the strain energy is converted into thermal energy in the wire. (ii) Hence suggest why the steel head of a hammer can become warm when it is used repeatedly to hit nails into wood. (iii) $F = \frac{1}{8} 1$	180 200 000	where k is the spring constant of the wire.	
the mass of the wire is 6.2×10^{-8} gb. Calculate and enter the other when the total mass of 8.0 kg is removed, assurning all the strain energy is converted into thermal energy in the wire. (ii) Hence suggest why the steel head of a hammer can become warm when it is used repeatedly to hit nails into wood. [5] Suggested Solution: (a) (i) $F = k\Delta I \implies k = \frac{F}{\Delta I}$ (ii) $F = \frac{stress}{strain} = \frac{FIA}{\Delta III} = \frac{FI}{A\Delta I}$ (b) (i) Circumference of pulley = πd $\frac{\Delta x}{\pi d} = \frac{8.5^{\circ}}{360^{\circ}} \implies \Delta x = \frac{8.5}{360} \times \pi \times 1.6 \times 10^{-2} = 1.19 \times 10^{-3} \text{ m} \approx 1.2 \text{ mm}$ (ii) 1. Increase in stress in the wire = $\frac{F}{A}$ $= \frac{mg}{A}$ $= \frac{40 \times 9.81}{6.2 \times 10^{-3}} = 1.11 \times 10^{8} \text{ Nm}^{-2}$ 2. Increase in the strain of the wire = $\frac{\Delta x}{L}$ $= \frac{1.2 \times 10^{-3}}{1.4} = 8.6 \times 10^{-4}$ 3. Young modulus of the material of the wire = $\frac{1.11 \times 10^{8}}{8.6 \times 10^{-4}}$ $= 1.13 \times 10^{11} \text{ Nm}^{-2}$		Calculate the strain energy stored in the wife for this exterior	
Suggested Solution: (a) (i) $F = k\Delta I \implies k = \frac{F}{\Delta I}$ (ii) $F = \frac{\text{stress}}{\text{strain}} = \frac{F/A}{\Delta I/I} = \frac{F/I}{A\Delta I}$ (b) (i) Circumference of pulley = πd $\frac{\Delta x}{\pi d} = \frac{3.5^{\circ}}{360^{\circ}}$ $\Rightarrow \Delta x = \frac{8.5}{360} \times \pi \times 1.6 \times 10^{-2} = 1.19 \times 10^{-3} \text{ m} \approx 1.2 \text{ mm}$ (ii) 1. Increase in stress in the wire = $\frac{F}{A}$ $= \frac{mg}{A}$ $= \frac{4.0 \times 9.81}{6.2 \times 10^{-7}} = 1.11 \times 10^{8} \text{ Nm}^{-2}$ 2. Increase in the strain of the wire = $\frac{\Delta x}{1.4}$ $= \frac{1.2 \times 10^{-3}}{1.4} = 8.6 \times 10^{-4}$ 3. Young modulus of the material of the wire = $\frac{1.11 \times 10^{8}}{8.6 \times 10^{-4}}$ $= 1.13 \times 10^{11} \text{ Nm}^{-2}$ (c) (i)	ocomporciali ocomporciali mun ett 9 km	the mass of the wire is 6.2 × 10 ⁻⁸ kg. Calculate the driange in composition the wire when the total mass of 8.0 kg is removed, assuming all the strain energy is converted into thermal energy in the wire.	
Suggested Solution: (a) (i) $F = k\Delta I \Rightarrow k = \frac{F}{\Delta I}$ (ii) $F = \frac{\text{Stress}}{\text{Strain}} = \frac{F/A}{\Delta I/I} = \frac{F/I}{A\Delta I}$ (b) (i) Circumference of pulley = πd $\frac{\Delta x}{\pi d} = \frac{8.5^{\circ}}{360^{\circ}}$ $\Rightarrow \Delta x = \frac{8.5}{360} \times \pi \times 1.6 \times 10^{-2} = 1.19 \times 10^{-3} \text{ m} \approx 1.2 \text{ mm}$ (ii) 1. Increase in stress in the wire = $\frac{F}{A}$ $= \frac{mg}{A}$ $= \frac{4.0 \times 9.81}{6.2 \times 10^{-7}} = 1.11 \times 10^{8} \text{ Nm}^{-2}$ 2. Increase in the strain of the wire = $\frac{\Delta x}{1.2}$ $= \frac{1.2 \times 10^{-3}}{1.4} = 8.6 \times 10^{-4}$ 3. Young modulus of the material of the wire = $\frac{1.11 \times 10^{9}}{8.6 \times 10^{-4}}$ $= 1.13 \times 10^{11} \text{ Nm}^{-2}$ (c) (i)	(ii)	Hence suggest why the steel head of a hammer can become warm when it	
Suggested Solution: (a) (i) $F = k\Delta I \Rightarrow k = \frac{F}{\Delta I}$ (ii) $F = \frac{\text{Stress}}{\text{Strain}} = \frac{F/A}{\Delta I/I} = \frac{F/}{A\Delta I}$ (b) (i) Circumference of pulley = πd $\frac{\Delta x}{\pi d} = \frac{8.5^{\circ}}{360^{\circ}} \times \pi \times 1.6 \times 10^{-2} = 1.19 \times 10^{-3} \text{ m} \approx 1.2 \text{ mm}$ (ii) 1. Increase in stress in the wire = $\frac{F}{A}$ $= \frac{mg}{A}$ $= \frac{4.0 \times 9.81}{6.2 \times 10^{-7}} = 1.11 \times 10^{8} \text{ Nm}^{-2}$ 2. Increase in the strain of the wire = $\frac{\Delta x}{1.2 \times 10^{-3}} = 8.6 \times 10^{-4}$ $= \frac{1.2 \times 10^{-3}}{1.4} = 8.6 \times 10^{-4}$ 3. Young modulus of the material of the wire = $\frac{1.11 \times 10^{8}}{8.6 \times 10^{-4}} = 1.13 \times 10^{11} \text{ Nm}^{-2}$ (c) (i)	do all' sit si	is used repeatedly to filt flails into wood.	
(a) (i) $F = k\Delta I \Rightarrow k = \frac{F}{\Delta I}$ (ii) $F = \frac{\text{stress}}{\text{strain}} = \frac{FIA}{\Delta III} = \frac{FI}{A\Delta I}$ (b) (i) Circumference of pulley = πd $\frac{\Delta x}{\pi d} = \frac{8.5^{\circ}}{360^{\circ}}$ $\Rightarrow \Delta x = \frac{8.5}{360} \times \pi \times 1.6 \times 10^{-2} = 1.19 \times 10^{-3} \text{ m} \approx 1.2 \text{ mm}$ (ii) 1. Increase in stress in the wire = $\frac{F}{A}$ $= \frac{mg}{A}$ $= \frac{4.0 \times 9.81}{6.2 \times 10^{-7}} = 1.11 \times 10^{8} \text{ Nm}^{-2}$ 2. Increase in the strain of the wire = $\frac{\Delta x}{L}$ $= \frac{1.2 \times 10^{-3}}{1.4} = 8.6 \times 10^{-4}$ 3. Young modulus of the material of the wire = $\frac{1.11 \times 10^{8}}{8.6 \times 10^{-4}}$ $= 1.13 \times 10^{11} \text{ Nm}^{-2}$ (c) (i)	max of sixt of	[bull day]	
(a) (i) $F = k\Delta I \Rightarrow k = \frac{F}{\Delta I}$ (ii) $F = \frac{\text{stress}}{\text{strain}} = \frac{FIA}{\Delta III} = \frac{FI}{A\Delta I}$ (b) (i) Circumference of pulley = πd $\frac{\Delta x}{\pi d} = \frac{8.5^{\circ}}{360^{\circ}}$ $\Rightarrow \Delta x = \frac{8.5}{360} \times \pi \times 1.6 \times 10^{-2} = 1.19 \times 10^{-3} \text{ m} \approx 1.2 \text{ mm}$ (ii) 1. Increase in stress in the wire = $\frac{F}{A}$ $= \frac{mg}{A}$ $= \frac{4.0 \times 9.81}{6.2 \times 10^{-3}} = 1.11 \times 10^{8} \text{ Nm}^{-2}$ 2. Increase in the strain of the wire = $\frac{\Delta x}{L}$ $= \frac{1.2 \times 10^{-3}}{1.4} = 8.6 \times 10^{-4}$ 3. Young modulus of the material of the wire = $\frac{1.11 \times 10^{8}}{8.6 \times 10^{-4}}$ $= 1.13 \times 10^{11} \text{ Nm}^{-2}$ (c) (i)	12	Shirtler	
	(ii)	$F = \frac{\text{stress}}{\text{strain}} = \frac{F/A}{\Lambda/I} = \frac{FI}{A\Delta I}$	
(ii) 1. Increase in stress in the wire = $\frac{F}{A}$ = $\frac{mg}{A}$ = $\frac{4.0 \times 9.81}{6.2 \times 10^{-7}}$ = 1.11×10^8 Nm ⁻² 2. Increase in the strain of the wire = $\frac{\Delta X}{L}$ = $\frac{1.2 \times 10^{-3}}{1.4}$ = 8.6×10^{-4} 3. Young modulus of the material of the wire = $\frac{1.11 \times 10^8}{8.6 \times 10^{-4}}$ = 1.13×10^{11} Nm ⁻² (c) (i)		Circumference of pulley = πd	
$= \frac{mg}{A}$ $= \frac{4.0 \times 9.81}{6.2 \times 10^{-7}} = 1.11 \times 10^{8} \text{ Nm}^{-2}$ 2. Increase in the strain of the wire $= \frac{\Delta x}{L}$ $= \frac{1.2 \times 10^{-3}}{1.4} = 8.6 \times 10^{-4}$ 3. Young modulus of the material of the wire $= \frac{1.11 \times 10^{8}}{8.6 \times 10^{-4}}$ $= 1.13 \times 10^{11} \text{ Nm}^{-2}$ (c) (i)		Circumference of pulley = πd $\frac{\Delta x}{\pi d} = \frac{8.5^{\circ}}{360^{\circ}}$ $\Rightarrow \Delta x = \frac{8.5}{360} \times \pi \times 1.6 \times 10^{-2} = 1.19 \times 10^{-3} \text{ m} \approx 1.2 \text{ mm}$	
$= \frac{4.0 \times 9.81}{6.2 \times 10^{-7}} = 1.11 \times 10^{8} \text{ Nm}^{-2}$ 2. Increase in the strain of the wire $= \frac{\Delta x}{L}$ $= \frac{1.2 \times 10^{-3}}{1.4} = 8.6 \times 10^{-4}$ 3. Young modulus of the material of the wire $= \frac{1.11 \times 10^{8}}{8.6 \times 10^{-4}}$ $= 1.13 \times 10^{11} \text{ Nm}^{-2}$ (c) (i)	(b) (i)	Circumference of pulley = πd $\frac{\Delta x}{\pi d} = \frac{8.5^{\circ}}{360^{\circ}}$ $\Rightarrow \Delta x = \frac{8.5}{360} \times \pi \times 1.6 \times 10^{-2} = 1.19 \times 10^{-3} \text{ m} \approx 1.2 \text{ mm}$	
2. Increase in the strain of the wire = $\frac{\Delta x}{L}$ = $\frac{1.2 \times 10^{-3}}{1.4} = 8.6 \times 10^{-4}$ 3. Young modulus of the material of the wire = $\frac{1.11 \times 10^8}{8.6 \times 10^{-4}}$ = 1.13×10^{11} Nm ⁻²	(b) (i)	Circumference of pulley = πd $\frac{\Delta x}{\pi d} = \frac{8.5^{\circ}}{360^{\circ}}$ $\Rightarrow \Delta x = \frac{8.5}{360} \times \pi \times 1.6 \times 10^{-2} = 1.19 \times 10^{-3} \text{ m} \approx 1.2 \text{ mm}$ 1. Increase in stress in the wire = $\frac{F}{A}$	
$= \frac{1.2 \times 10^{-3}}{1.4} = 8.6 \times 10^{-4}$ 3. Young modulus of the material of the wire = $\frac{1.11 \times 10^8}{8.6 \times 10^{-4}}$ $= 1.13 \times 10^{11} \text{ Nm}^{-2}$ (c) (i)	(b) (i)	Circumference of pulley = πd $\frac{\Delta x}{\pi d} = \frac{8.5^{\circ}}{360^{\circ}}$ $\Rightarrow \Delta x = \frac{8.5}{360} \times \pi \times 1.6 \times 10^{-2} = 1.19 \times 10^{-3} \text{ m} \approx 1.2 \text{ mm}$ 1. Increase in stress in the wire = $\frac{F}{A}$ $= \frac{mg}{A}$	
3. Young modulus of the material of the wire = $\frac{1.11 \times 10^8}{8.6 \times 10^{-4}}$ = 1.13×10^{11} Nm ⁻²	(b) (i)	Circumference of pulley = πd $\frac{\Delta x}{\pi d} = \frac{8.5^{\circ}}{360^{\circ}}$ $\Rightarrow \Delta x = \frac{8.5}{360} \times \pi \times 1.6 \times 10^{-2} = 1.19 \times 10^{-3} \text{ m} \approx 1.2 \text{ mm}$ 1. Increase in stress in the wire = $\frac{F}{A}$ $= \frac{mg}{A}$ $= \frac{4.0 \times 9.81}{6.2 \times 10^{-7}} = 1.11 \times 10^{8} \text{ Nm}^{-2}$	
= 1.13×10 ¹¹ Nm ⁻² (c) (i)	(b) (i)	Circumference of pulley = πd $\frac{\Delta x}{\pi d} = \frac{8.5^{\circ}}{360^{\circ}}$ $\Rightarrow \Delta x = \frac{8.5}{360} \times \pi \times 1.6 \times 10^{-2} = 1.19 \times 10^{-3} \text{ m} \approx 1.2 \text{ mm}$ 1. Increase in stress in the wire = $\frac{F}{A}$ $= \frac{mg}{A}$ $= \frac{4.0 \times 9.81}{6.2 \times 10^{-7}} = 1.11 \times 10^{8} \text{ Nm}^{-2}$ 2. Increase in the strain of the wire = $\frac{\Delta x}{L}$	
(c) (i) Figure 1 and 1 and 1 and 2 and 2 and 3	(b) (i)	Circumference of pulley = πd $\frac{\Delta x}{\pi d} = \frac{8.5^{\circ}}{360^{\circ}}$ $\Rightarrow \Delta x = \frac{8.5}{360} \times \pi \times 1.6 \times 10^{-2} = 1.19 \times 10^{-3} \text{ m} \approx 1.2 \text{ mm}$ 1. Increase in stress in the wire = $\frac{F}{A}$ $= \frac{mg}{A}$ $= \frac{4.0 \times 9.81}{6.2 \times 10^{-7}} = 1.11 \times 10^{8} \text{ Nm}^{-2}$ 2. Increase in the strain of the wire = $\frac{\Delta x}{L}$	
(8) The pulley his diameter 1.8 cm. The wire does not allo over the L. v. as the pathey turns. Show that the extension of the wire resulting from the in assertion on its end is 1.2 mm.	(b) (i)	Circumference of pulley = πd $\frac{\Delta x}{\pi d} = \frac{8.5^{\circ}}{360^{\circ}}$ $\Rightarrow \Delta x = \frac{8.5}{360} \times \pi \times 1.6 \times 10^{-2} = 1.19 \times 10^{-3} \text{ m} \approx 1.2 \text{ mm}$ 1. Increase in stress in the wire = $\frac{F}{A}$ $= \frac{mg}{A}$ $= \frac{4.0 \times 9.81}{6.2 \times 10^{-7}} = 1.11 \times 10^{8} \text{ Nm}^{-2}$ 2. Increase in the strain of the wire = $\frac{\Delta x}{L}$ $= \frac{1.2 \times 10^{-3}}{1.4} = 8.6 \times 10^{-4}$ 3. Young modulus of the material of the wire = $\frac{1.11 \times 10^{8}}{8.6 \times 10^{-4}}$	
(8) The pulley has diameter 1.8 cm. The wire does not allo ever the we still guide turns. Show that the extension of the wire resulting from the in case on its end is 1.2 mm.	(b) (i)	Circumference of pulley = πd $\frac{\Delta x}{\pi d} = \frac{8.5^{\circ}}{360^{\circ}}$ $\Rightarrow \Delta x = \frac{8.5}{360} \times \pi \times 1.6 \times 10^{-2} = 1.19 \times 10^{-3} \text{ m} \approx 1.2 \text{ mm}$ 1. Increase in stress in the wire = $\frac{F}{A}$ $= \frac{mg}{A}$ $= \frac{4.0 \times 9.81}{6.2 \times 10^{-7}} = 1.11 \times 10^{8} \text{ Nm}^{-2}$ 2. Increase in the strain of the wire = $\frac{\Delta x}{L}$ $= \frac{1.2 \times 10^{-3}}{1.4} = 8.6 \times 10^{-4}$ 3. Young modulus of the material of the wire = $\frac{1.11 \times 10^{8}}{8.6 \times 10^{-4}}$	
	(b) (l)	Circumference of pulley = πd $\frac{\Delta x}{\pi d} = \frac{8.5^{\circ}}{360^{\circ}}$ $\Rightarrow \Delta x = \frac{8.5}{360} \times \pi \times 1.6 \times 10^{-2} = 1.19 \times 10^{-3} \text{ m} \approx 1.2 \text{ mm}$ 1. Increase in stress in the wire = $\frac{F}{A}$ $= \frac{mg}{A}$ $= \frac{4.0 \times 9.81}{6.2 \times 10^{-7}} = 1.11 \times 10^{8} \text{ Nm}^{-2}$ 2. Increase in the strain of the wire = $\frac{\Delta x}{L}$ $= \frac{1.2 \times 10^{-3}}{1.4} = 8.6 \times 10^{-4}$ 3. Young modulus of the material of the wire = $\frac{1.11 \times 10^{8}}{8.6 \times 10^{-4}}$ $= 1.13 \times 10^{11} \text{ Nm}^{-2}$	
	(b) (l)	Circumference of pulley = πd $\frac{\Delta x}{\pi d} = \frac{8.5^{\circ}}{360^{\circ}}$ $\Rightarrow \Delta x = \frac{8.5}{360} \times \pi \times 1.6 \times 10^{-2} = 1.19 \times 10^{-3} \text{ m} \approx 1.2 \text{ mm}$ 1. Increase in stress in the wire = $\frac{F}{A}$ $= \frac{mg}{A}$ $= \frac{4.0 \times 9.81}{6.2 \times 10^{-7}} = 1.11 \times 10^{8} \text{ Nm}^{-2}$ 2. Increase in the strain of the wire = $\frac{\Delta x}{L}$ $= \frac{1.2 \times 10^{-3}}{1.4} = 8.6 \times 10^{-4}$ 3. Young modulus of the material of the wire = $\frac{1.11 \times 10^{8}}{8.6 \times 10^{-4}}$ $= 1.13 \times 10^{11} \text{ Nm}^{-2}$	(i) the application (ii) the Young most (iii) to oxide to determine the state of th
	(b) (l)	Circumference of pulley = πd $\frac{\Delta x}{\pi d} = \frac{8.5^{\circ}}{360^{\circ}}$ $\Rightarrow \Delta x = \frac{8.5}{360} \times \pi \times 1.6 \times 10^{-2} = 1.19 \times 10^{-3} \text{ m} \approx 1.2 \text{ mm}$ 1. Increase in stress in the wire = $\frac{F}{A}$ $= \frac{mg}{A}$ $= \frac{4.0 \times 9.81}{6.2 \times 10^{-7}} = 1.11 \times 10^{8} \text{ Nm}^{-2}$ 2. Increase in the strain of the wire = $\frac{\Delta x}{L}$ $= \frac{1.2 \times 10^{-3}}{1.4} = 8.6 \times 10^{-4}$ 3. Young modulus of the material of the wire = $\frac{1.11 \times 10^{8}}{8.6 \times 10^{-4}}$ $= 1.13 \times 10^{11} \text{ Nm}^{-2}$	(i) the application (ii) the Young most (iii) the Young most (iii) to determine the response that the response to the property of the purious that is made to the purious after the purious most of the purious after the purious most of the purious after the purious most of the purious after purious most of the purious after the purious most of the purious that is made young. Shy
	(b) (l)	Circumference of pulley = πd $\frac{\Delta x}{\pi d} = \frac{8.5^{\circ}}{360^{\circ}}$ $\Rightarrow \Delta x = \frac{8.5}{360} \times \pi \times 1.6 \times 10^{-2} = 1.19 \times 10^{-3} \text{ m} \approx 1.2 \text{ mm}$ 1. Increase in stress in the wire = $\frac{F}{A}$ $= \frac{mg}{A}$ $= \frac{4.0 \times 9.81}{6.2 \times 10^{-7}} = 1.11 \times 10^{8} \text{ Nm}^{-2}$ 2. Increase in the strain of the wire = $\frac{\Delta x}{L}$ $= \frac{1.2 \times 10^{-3}}{1.4} = 8.6 \times 10^{-4}$ 3. Young modulus of the material of the wire = $\frac{1.11 \times 10^{8}}{8.6 \times 10^{-4}}$ $= 1.13 \times 10^{11} \text{ Nm}^{-2}$	(i) the application (ii) the Young most (iii) the Young most (iii) to determine the response that the response to the property of the purious that is made to the purious after the purious most of the purious after the purious most of the purious after the purious most of the purious after purious most of the purious after the purious most of the purious that is made young. Shy




topic 6 Work, Energy	/ & Power	()
topic o vvoik, Energy	7 & Power Page 9	1
The ball is dropped from	m rest and it bounces on the plate, reaching a height h.	learning CORNER
(a) Calculate the spee	ed of the ball as it reaches the plate. [2]	
(b) As the ball loses co	ontact with the plate after bouncing, the kinetic energy of the ball	
	before bouncing. Calculate	
	b which the ball bounces,	
	the ball as it leaves the plate after bouncing. [4]	
during the bounce.		
	ne law of conservation of momentum, comment on your answer	
to (c).	[3] [J02/P2/Q4]	
	[002/72/04]	
Suggested Solution.		
(a) $v^2 = u^2 + 2gs$		
$v = \sqrt{u^2 + 2gs} = \sqrt{0^2}$	$+2(9.81)(1.6) = 5.6 \text{ ms}^{-1}$	
(b) (i) At height h,		
gain in potential	l energy of ball = loss of kinetic energy	
	$mgh = 0.90 \times \left(\frac{1}{2}mv^2\right)$	
	$h = \frac{0.90 \times \frac{1}{2}(5.6)^2}{9.81} = 1.4 \text{ m}$	
	9.81	
(ii) Since the kinetic	e energy of the ball is 90% of that just before bouncing,	
	$\frac{1}{2}mv_1^2 = 0.90 \times \frac{1}{2}mv^2$	
	$\Rightarrow v_1^2 = 0.90 \times 5.6^2$	
	$v_i = 5.3 \text{ ms}^{-1}$	
where v.: speed	d of ball as it leaves the plate after bouncing.	
	m of the ball during the bounce	
	C SA OF	(c) $73 g = \frac{73}{1000} kg$
$= mv_{\rm f} - mv$	Before bounce	, 1000
$= m(v_t - v)$	5.6 ms ⁻¹ ♥	
$=\frac{73}{1000}(5.3-(-5.6))$	5.3 ms ⁻¹ ↑	
= 0.8 Ns	After bounce	
of the steel ball and he the bounce is 0.8 Ns	of Conservation of Momentum, the total linear momentum of any external forces act, equals zero. The system in this case consists orizontal steel plate. The change in momentum of the ball during in the upward direction. By the Law of Conservation of Momentum of the steel plate also equals 0.8 Ns but in the downward	(d) The downward motion of the steel plate is neglible com- pared to the upward motion of the steel ball after the bounce since the mass of the former is much larger than the latter.
		GBs GBs

opic 6	Work, Energy & Power Page 11	- I was a second
One su	ch wind turbine is built near a town. The local newspaper reported that the wind could serve 200 homes'.	learning CORNER
(a) Su	ggest reasons, one in each case,	
(i)	why the manufacturer specifies a nominal output power for the wind turbine,	
(ii)	why the report that the wind turbine can serve 200 homes is misleading. [2]	
(b) De	termine the minimum height of the tip of a rotor blade above ground level.	
	height = m [1]	
(c) (i)	Use the manufacturer's data to give values of	
(-) ()	1. the maximum power output,	
	maximum power =kW	
	2. the wind speed for this maximum power.	
,	wind speed = ms ⁻¹ [1]	
(ii)	Air of density ρ and speed v is incident normally on a rotor of radius r . The kinetic energy E of the air incident on the rotor in unit time is given by	
	$E = \frac{1}{2}\pi r^2 v^3 \rho.$	
	The air has density 1.25 kg m ⁻³ .	
	Calculate, for the wind turbine operating at maximum output power,	
	the kinetic energy of air incident per second on the rotor (the incident wind power).	
	2. the overall efficiency of generation of electric power. [4]	
(ili	In addition to the power usefully transformed in the wind turbine, 10% of the incident wind power is lost. Calculate the power of the wind after it has passed through the rotor.	# etb to have \$ ((8)) 100-13-10 100
	power = W [2]	
(iv	At high wind speeds, the turbine is 'cut out', that is, the generator is no longer turned by the blades.	W 101×85.5+
	1. Use Fig. 8.3 to determine this cut-out speed.	(IA f. Cut-out ap
	cut-out speed = ms ⁻¹	2. Fig. 8.3 sh
	2. Suggest one reason why it is necessary to have a cut-out speed. [2]	
(d) (i)	State whether the generator produces direct current or alternating current, explaining how you came to your conclusion.	a seet bris. .yousoide
(ii)	Calculate the nominal current from the generator.	
	current = A [4]	
	e wind turbine must be protected from lightning strike.	
	by lightning.	
(ii)	Suggest how the risk of damage by lightning may be minimised. [4] [D02/P2/Q8]	
(i)	Suggest, with reasons, which part of the wind turbine is most likely to be struck by lightning. Suggest how the risk of damage by lightning may be minimised. [4]	


to	opic 6	W	ork, Energy &	Power			Page 12	1		
23/13								lea	ming	CORNER
5	Sugge	este	ed Solution:			f the using turbit	no because			
(a) (i)	wi	nd speeds are	specifies a not always	such that the ou	ver for the wind turbin tput power will always	ays be the			
	(ii)	Th	aximum. ne statement is n	nisleading be	cause it does not	specify whether the v	wind turbine			
		SU	applies only part	of or all of e	ach home's power blade above gro	er requirements.				
(
				ground to nu	$1b - \frac{1}{2}$ rotor diame	to septem stage of a				
			$-\frac{1}{2}(44) = 34 \text{ m}$							
	(c) (i)	1.	Maximum po	wer output =	600 kW					
		2.	. Wind speed	for maximum	power output = "	15 ms ⁻¹				
	(ii) 1.	. Incident wind							
					$\tau \left(\frac{1}{2} \times 44\right)^2 15^3 (1.2)$	25)	•			
					07 kW					
				= 3.3	21×10 ⁶ W(3 S.F.)	710				
		2	e. Efficiency =	output po	wer ×100%					
			=	600 kW ×1	00% = 19%					
				0201 1111		the rotor				
	(i				s passed through	ni bemiolenad vilu				
		:	$=\frac{100-19-10}{100}\times$	incident wind	power					
			= 0.71×3207 kV	V						
			= 2277 kW				turi est aboas			
			$= 2.28 \times 10^6 \text{ W}$	(3 S.F.)						
	-	iv)	1. Cut-out spe	ed = 25 ms		e friis cut-out speed		(c)		output power
	(10)	2. Fig. 8.3 sho decreases	as the wind s	utput power peak speed increases. have a cut-out si	s at a wind speed of The efficiency also peed to reduce unne speeds that do not	cessary wear	s Song to Hell		in Fig. 8. zero at this wi
	(d) (The generator	nows that the ed down for d	voltage provided	The information proby the wind turbine tion. Only alternating	3 000 V. 11110			
		""	Nominal current	= Nominal or	utput voltage					
		(11)	Tro(Timer our on	Nominal p	ower output					
				$=\frac{500\times10^3}{690}$						
		,,,	The Property			be struck by lightning	ng as they are			
	(e)	(i)	sharper compare	red to the res	t of the turbine. I	he electric field strei hem during a thunde	igui at the tipo	(e)	usually ha	htning condu- s a sharp po hence more lil e conductor ra
		(ii)	A lightning con	ductor may b		generator housing,	and connected		than the control turbine.	other parts of


topic 6 Work, Energy & Power	Page 14	
	le	arning CORN
3. Gain in kinetic energy = $\frac{1}{2}mv^2 - \frac{1}{2}mu^2$		
$=\frac{1}{2}m(v^2-u^2)$		
$= \frac{1}{2}m(v^2 - u^2)$ $= \frac{1}{2} \times 800 \times (28^2 - 0^2)$		
= 3.14×10 ⁵ J		
4. Gain in gravitational potential energy = mgh	(b)	(i) 4. The vertical heigh
$= 800 \times 9.81 \times$ = $3.08 \times 10^5 \text{ J}$	450sin5°	gained should be used calculate gain in gravitation potential energy.
(ii) Useful output power of the car = gain in kinetic energy + gatime tal	ain in potential energy	Hence, $h = 450 \sin 5^\circ$.
	ken	
$= \frac{31.4 \times 10^5 + 3.08 \times 10^5}{32.1}$ $= 1.94 \times 10^4 \text{ W}$		
$= 1.94 \times 10^4 \text{ W}$		
(iii) The calculation in (ii) does not take into account the therm the car engine. Hence, the actual power output of the ca than the useful output power calculated in (ii).	al energy produced by (iii) ar engine will be larger	Some work is done again frictional forces of engin road and tyres.
. 19900 00 00 0	term to the service of the service o	
Question 9		
(a) A stone of mass 56 g is thrown horizontally from the top of a	a cliff with a speed of	
18 ms ⁻¹ , as illustrated in Fig. 4.1.	ni nieg	
18m s ⁻¹	grin in gravitational potential	
	g rii rileg	
Marian Marian	srikmateb et (i) pl andvane si	
16m		
Maria de la companione	g leulas selt yelv noce a sele l	
	if calculated in (II).	
Fig. 4.1		
The initial height of the stone above the level of the sea is 16 is be neglected.	m. Air resistance may	
 (i) Calculate the change in gravitational potential energy of of falling through 16 m. 	the stone as a result [2]	
(ii) Calculate the total kinetic energy of the stone as it read		
Militrassing to criss even flow in manual frame	[3]	
(b) Use your answer in (a)(ii) to show that the speed of the stor is approximately 25 ms ⁻¹ .	ne as it hits the water [1]	
(c) State the horizontal velocity of the stone as it hits the water		
(d) (i) On the grid of Fig. 4.2, draw a vector diagram to rep velocity and the resultant velocity of the stone as it hits		

