1 TRIGONOMETRY

Objectives

After studying this chapter you should

* be able to handle with confidence a wide range of
trigonometric identities;

* be able to express linear combinations of sine and cosine in
any of the formsRsin(6 + a) orRco6+ a);
» know how to find general solutions of trigonometric equations;

» be familiar with inverse trigonometric functions and the
associated calculus.

1.0 Introduction

In the firstPure Mathematic®ook in this series, you will have
encountered many of the elementary results concerning the
trigonometric functions. These will, by and large, be taken as
read in this chapter. However, in the first few sections there is
some degree of overlap between the two books: this will be good
revision for you.

1.1  Sum and product formulae

You may recall that

sin(A+ B) =sinAcosB + cosAsinB

sin(A- B) =sinAcosB - cosAsinB

Adding these two equations gives
sin(A+ B) +sin(A- B) = 2sinAcosB (1)
Let C=A+BandD=A-B,

thenC+D=2AandC-D =2B. Hence

+ -
:C D,B:C D
2 2

A

and (1) can be written as
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[c+ DDCO -D0O

S|nC+S|nD:23|nD 7 0O 5 0

This is more easily remembered as

'sine plus sine twice sing half the supcog half the differenge

Activity 1

In a similar way to above, derive the formulae for

(a) sinC-sinD (b) cosC+cosD (c) cosC-cosD

By reversing these formulae, write down further formulae for

(a) 2sinEcosF (b) 2cosEcosF (c) 2sinEsinF

Example
Show thatcos59+sin59 =2 cosl14.

Solution
Firstly, sin5%=cos 32, sincesin® = co{ 90- 6)
So LHS=cos59 +cos 32
Sér59+ 31@C Séﬁg— 31@
=2co 0
2 2
=2cos48xcosl4
=2X Q cosl4
2
=2 cos14
=RHS
Example

Prove thatsin x +sin 2x +sin 3x = sin 2x(1+ 2 cosx).
Solution

LHS =sin 2x + (sinx +sin 3x)
. . [BXx+x[0 X — X[
—S|n2x+23|nD co > 0O

=sin 2x + 2sin 2xcosx
=sin 2x(1+ 2 cosx)




Example

Write cos4xcosx —sin6xsin3x as a product of terms.

Solution
Now C0S 4X COSX :%{cos(éb(+x)+cos(4x—x)}
:10035(+lcos3<
2 2
and sin 6x sin 3x :%{cos( 6x - 3x) - cog{ 6+ 3x)}
:1c033<—10059<
2 2
Thus,

LHS :écos&+£c053<—1cos3<+écosg<
2 2 2 2

= %(cos& +cosX)

1 X+ 9X [ X —9X[]
:—><2co%5 co
2 2 O 2 0

= COS X COS X

The sum formulae are given by

sinA+sinB = 2si2A* B0 A-BD

0, 0% 5 O

o A+BO_. JA-BO
SinA smB-Zco% 2 Dst > O
cosA+cosB:200%A;Bgco A;Bg
_ _ s JA+BO . JA-BO
CosA-cosB = 25|r% > Dst > O

and the product formulae by

sinAcosB = %(sin(A+ B) +sin(A-B))

COsAcosB = %(cos(A+ B) + cos(A- B))

sinAsinB = %(cos(A— B) —cos(A+ B))
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Exercise 1A

1. Write the following expressions as products: 4. Establish the following identities:
(a) cos5x—cosX (b) sinlix-sin7x (a) cos8 —cos P = 4sin’ 8cosh

(c) cosx+cosx (d) sin3x+sin1x (b) sin6x +sin 4x - sin 2x = 4 cos Xsin 2xcosx

2m 1l4m am 8 ; ; ;
+ + + 2sin4A+sin6A +sin 2A
(e) co%5 cosl—5 co%5 co%5 c ! ! ! —cof A
2sin4A-sin6A-sin2A
(f) sin4®+sin5C +sin6C°
_ (d) sin(A+B) +sin(A-B) — tanA
(g) cosll4+sin24 cofA+B)+codA-B)
2. Evaluate in rational/surd form

©) cog6+30°)+coq6+60°) 1-tané
sin(6+30°) +sin(6+60°) 1+tan@

sin758+sin15

3. Write the following expressions as sums or

differences: 5. Write coslX+ cos6x+cos4x+cos2 as a product
(a) 2cos&cos of terms.
6. Expresscos3kcosx-coscos5 as a product of

(b) 200% x%co DS;%

terms.

COT_ L0 AT o0
(c) ZstZ 39Dc0%4+t9Ij

(d) 2sin163cos108

1.2 Linear combinations of sin
and cos

Expressions of the forracos@ +bsin@, for constants andb,
involve two trig functions which, on the surface, makes them
difficult to handle. After working through the following

activity, however, you should be able to see that such
expressions (callelinear combinations of sin and cos — linear
since they involve no squared terms or higher powers) can be
written as a single trig function. By re-writing them in this way
you can deduce many results from the elementary properties of
the sine or cosine function, and solve equations, without having
to resort to more complicated techniques.

For this next activity you will find it very useful to have a graph
plotting facility. Remember, you will be working in radians.

Activity 2

Sketch the graph of a function of the form
y =asinx+bcosx

(wherea andb are constants) in the ranger< x < 1.
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From the graph, you must identify the amplitude of the function
and thex-coordinates of

(i) the crossing point on theaxis nearest to the origin, and
(i) the first maximum of the function

as accurately as you can.
An example has been done for you; for sinx + cosx, you can
see thaamplitudeR=1.4

crossing point nearest to the origin Oxat a = —77}

maximum occurs axk = = 727

Try these for yourself :

(a) y=3sinx+4cosx (b)) y=12cosx-5sinx
(c) y=9cosx+12sinx (d) y=15sinx—8cosx
(e) y=2sinx+5cosx  (f) y=3cosx-2sinx

In each case, make a note of

R, the amplitude;
a, the crossing point nearest to O;
B, thex-coordinate of the maximum.

In each example above, you should have noticed that the curve is
itself a sine/cosine 'wave'. These can be obtained from the curves
of eithery =sinx ory = cosx by means of two simple
transformations (taken in any order).

1. A stretch parallel to they-axis by a factor oR,
the amplitude, and

2. Atranslation parallel to thex-axis by either
a or 3 (depending on whether you wish to start
with sinx or cosx as the original function).

Consider, for examplg =sinx +cosx. This can be written in the
form y=Rsin(x+a),since

Rsin(x+a) = R{sinxcosa +cosxsina}

= Rcosa sinx + Rsina cosx

The R(>0) anda should be chosen so that this expression is the
same asinx + Cosx.
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Thus
Rcosa =1 andRsina =1

Dividing these terms gives

- -
tana =10 a = 4

Squaring and adding the two terms gives
Rcoga +Rsirfa =12 +2
Rz(cos"’a +sinza) =2

Since co%r +sirfa =1,
R=20 R=+2

Thus

g

SiNX+CcosSXx =~ 2sin=x+
K 40

Activity 3

Express the function s+ cosx in the form

sinx +cosx = Rcos(x — a)

Find suitable values fdR and a using the method shown above.

Another way of obtaining the result in Activity 3 is to note that
Lo m_ 0
sin@ = co%i GD
so that

70
40

r_ R
\2co%§ %+4%

m_ 0
\2CO%Z XD

~
40

sinx+cosx =+ 2sin—x+

=\2co

since cost@) =cos6.



Example

Write 7sinx —4cosx in the formRsin(x - a)

whereR>0 and O <a < %.

Solution
Assuming the form of the result,

7sinx—4cosx = Rsin(x - a)
= Rsinxcosa — Rcosxsina

To satisfy the equation, you need
Rcosa =7
Rsina =4

Squaring and adding, as before, gives

R=\7"+4% =65

Thus
7 4 40
cosa =——, sina = r tana =—
/65 65 ED 70
O a =0.519 radians, to 3 sig. figs.
so 7sinx — 4 cosx = /65sin(x - 0.519)

Exercise 1B

Chapter 1 Trigonometry

Write (in each caseR>0and < a <) 5. 20sinx-21cosxin the formRsin(x - a)
1. 3sinx+4cosxin the formRsin(x + a) 6. 1l4cos+sinxin the formRcogx—a)

2. 4cosx+3sinxin the formRcos(x - a) 7. 2cos-sin2xin the formRcog 2x+a)
3. 15sinx—8cosxin the formRsin(x-a) 8. 3coshx+5sindxin the formRsin(3x +a)

4. 6cosx—2sinxin the formRcogx +a)
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1.3 Linear trigonometric
equations

In this section you will be looking at equations of the form

acosx+bsinx=c¢

for given constants, b andc.

Example
Solve 3cosx+sinx =2 for 0°< x<360°.

Solution

Method 1

Note that cosx and sifix are very simply linked using

cos x+sin’x=1 so a 'rearranging and squaring' approach

would seem in order.

Rearranging: 3cosx =2-sinx

Squaring: 9cog X = 4 - 4sinx +sin® x
O 9(1—sin2 x):4—4sinx+sin2x

0 0=10sirf x—4sinx-5

4+216

The quadratic formula now givesinx = 20

and sinx=0.93485 or-0.534847

giving Xx=69.2,110.8 or 212.3,327.7 (1d.p.)

Method 2

Write 3cosx +sinx asRcog{x—a) (or Rsin(x-a))

3cosx +sinx = Rcog{x - a)

Firstly, R=y3+1> =10

SO 3cosx +sinx =~\/10§%cosx+isinx§
/10 410

= 10(cosxcosa +sinxsina)
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Thus cosa :igsr sina = /L or tana = 1§:> a =18.43
£ 10 ~10 3

The equatiorBcosx +sinx =2 can now be written as
V10cogx-18.43)=2

2

O cogx—-18.43)=—-
S( ) v10
40 2
O Xx—18.43=cos @—@
10
O Xx—18.43=50.77 or 309.23

and
X =50.77+18.43 or 309.23+18.43

X=69.2 or 327.7 (1d.p.)

The question now arises as to why one method yields four answers,
the other only two. If you check all four answers you will find that
the two additional solutions in Method 1 do not fit the equation
3cosx+sinx=2. They have arisen as extra solutions created by

the squaring process. (Think of the difference between the
equationsx = 2 andx? = 4: the second one has two solutions.) If
Method 1 is used, then the final answers always need to be checked
in order to discard the extraneous solutions.

Exercise 1C

1. By writing 7sinx+6cosx in the form 3. Write + 3cosf +sinf asRco{6-a),
Rsin{x+ a)(R>0,0°<a <90°) solve the equation whereR>0and0<a <7§T and hence solve

7sinx+6cosx =9 for values ofx between

0° and 360. J3cosf+sinf =12 for 0<@<2rm.

2. Use the 'rearranging and squaring' method to solve Solve

(a) 4cosf+3sing =2 (a) 7cosx-6sinx=4  for —180°< x <180°
(b) 3sin6-2cosh =1 (b) 6sin6+8cosh=7 for 0°< 6<18C°
for 0°<6<360°. (c) dcosx+2sinx=+5 for 0°< x< 360°

(d) sex+5tanx+12=0 for O<x<2m
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1.4 More demanding equations

In this section you will need to keep in mind all of the identities
that you have encountered so far — including the Addition
Formulae, the Sum and Product Formulae and the Multiple
Angle Identities — in order to solve the given equations.

Example
Solvecos® +cosf =cosP for 0°< 8<180CF

Solution
, _ A+ B[O A-B[
Using cosA+cosB—2co% > DCO% > O
LHS=2cos3cos P
Thus 2cosPcosP =cosP
0 cosP(2cosBH-1)=0
Then
(a) cosIP=0
O 36=90°, 270, 45C°
O 6=30°,90°,150
or
(b) 2cosP-1=0
0 cos¥P=4%
O 20=60°, 30C°
O 6=30°,150 as already found.

Solutions aref = 30°(twice), 9¢, 150 (twice).

[Remember, for final solutions in ran@< 68 <180(°, solutions
for 36 must be in rang@°< 6 <3x180°=540.]

Exercise 1D

1. Solve for0°<6<180°: 2. Find all the values of satisfying the equation
(a) cosf+cosP =0 (b) sin46+sin30=0 or 0
sinx=23inD——foor 0<x=<2rm.
(c) sin@+sin30=sin26. 3

10
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3. By writing 36 as ¥ +860, show that 6. Find the solutiorx in the range0°< x<360° for
cos® = 4coS 6-3cosd which sin4x+cosX=0.
and find a similar expresion fain39 in terms of /- () Givent=tan} 6, write downtané in terms of
powers ofsind only. tand show that
Use these results to solve, fox 8<360°, cosd = 1-t?
T a2
(a) cosP+2cosf=0 1+t
. o Find also a similar expression fgmé in
(b) sin38 =3sin20 terms oft.

(c) cosf-cosP =tan’ 0 : 2t 2
(b) Show that25|n6—tan9=—4(l—3t )
4. Show thattanx+cotx =2cosecX. Hence solve 1-t

tanx +cotx =8cosx for 0< x< . (c) Hence solve2sin@—tan8 =6cots 0 for values
5. Solve the equation of 8 in the ranged°<6<360°.
sin2x+sin3x+sin5x =0 for 0°< x<18C°

1.5 The inverse trigonometric
functions

In the strictest sense, for a functibrio have an inverse it has to y

be 1-1 (‘one-to-one’). Now the three trigonometric functions /\ 1- y= six

sinx =k, for|k|<1, has infinitely many solutions. A sketch of ot 4\ 4 X
the graph ofy =sinx is shown opposite. / WJ \/ \/
When working on your calculator, if you firgihn™2 0.5, say, a
single answer is given, despite there being infinitely many to
choose from. In order to restrict a 'many-to-one' function of this
kind into a 1-1 function, so that the inverse function gives a
unique answer , the range of values is restricted. This can be
done in a number of ways, but the most sensible way is to

choose a range of valugsvhich includes the acute angles. This 1
is shown on the diagram opposite.

sine, cosine and tangent are each periodic. Thus the equation

Thus for-1<k<1,

)

sinx=k 0O x=sintk

. . . m m
will be assigned a unique valuexin the range—zs X< —:

these are the principal values of the inverse-sine function.

Activity 4

By drawing the graphy = cosx andy =tanx, find the ranges of
principal values of the inverse-cosine and inverse-tangent
functions. (These should include the acute angles)of

11
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Note that the inverse functions are denoted here by

sintx, cos?, tantx

These are not the same as

N1 1
sin ="~ etc.
( I X) sinx

and to avoid this confusion, some texts denote the inverse
functions as

arcsinx, arccosx, arctanx.

1.6 General solutions

Up until now you have been asked for solutions of trigonometric
equations within certain ranges. For example:

Solve sin3x =1 for 0°< x <18C°

or

Find the values 08 for which sin20+sin>6=0
with 0 6<2rm.

At the same time, you will have been aware that even the simplest
trig equation can have infinitely many solutiosm =0

(6 radians) is true whef =0, i1, 217,3m7,... andalsofor all

negative multiples ofr as well.

Overall, one could say that the equatsing =0 has general
solution 8 =n T wheren is an integer. Moreover, there are no
values of@ which satisfy this equation thedb not take this form.
Thus, 8=n ' describesll the values 08 satisfying §in6 =0'

asnis allowed to take any integer value. This is what is meant by
ageneral solutio.

General solution for the cosine function

For -900°< x<900° (radians can come later), the graph of
y = cosx is shown below.

y

P. V. y cosx

AWAWI WAWAR
EVEVAVEVEN

12



The liney =k (kis chosen as positive here, but as long as

-1<k<1, the actual value is immaterial) is also drawn on the
sketch.

The principal value of x for which x = cos*k (representing the
point wheny =k andy = cosxintersect) is circled and labelled
'P.V." Since the cosine function is periodic with per8sdr, all

other solutions to the equati@osx = k corresponding to this
principal value are obtained by adding, or subtracting, a

multiple of 360° to it. The points of intersection of the two
graphs representing these solutions are circled also.

Now the cosine curve here is symmetric in yh&xis. So ifa is

the principal value ok for which cosx =k, then—a is also a
solution, and this is not obtained by adding, or subtracting, a

multiple of 36(° to, or from,a. All the remaining solutions of
the equation can be obtained by adding or subtracting a multiple

of 360° to or from-a.

The general solution of the equation
cosx=k (-1<k<1l)
is then x=360nxa

where a =costk

is the principal value of the inverse cosine function amslan
integer.

In radians, usin@60° = 277 radians, the general solution looks
like

X=2nm+ a, n an integer.

Activity 5

Use the graphs of =tanx andy =sinx to find the general
solutions of the equations (in degrees) of the equations

tanx =k (—oo<k<oo)
and
sinx=k  (-1sk<1).

In each case, lat be the principal value concerned, helbe an
integer, and express the general solutions in terms of radians
once the results have been found in terms of degrees.

Chapter 1 Trigonometry
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These results are summarised as follows:

In radians In degrees
If sin@=sina, then Ifsin@ =sina, then
O=nm+(-1)"a 6=180n+(-1)"a
If cos@ =cosa, then If cos@ = cosa, then
6=2nmrta 6=360n+a
If tan@ =tana, then If tan@ = tana, then
O=nm+a 6=180n+a

[In each casen is an integer.]

The AEB'sBooklet of Formulagives only the set of results for

6, a in radians, but you should be able to convert the results into
degrees without any difficulty by remembering that

180C° = T radians, etc.

Example
Find the general solution, in degrees, of the equation
tan3P =3
Solution
tan¥=+3
g tan 3 =tan 60
O 36 =180n+60 quoting the above result

0 6 = (60n +20)°

[..,n=-10 6=-40°;n=00 6=20°;n=10 0=80°;...]

Sometimes, you may have to do some work first.

Example
Find the general solution, in radians, of the equation

8sin@+15co09 =6.

14
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Solution

Rewriting the LHS of this equation in the forRsin(6 + a), for

instance, giveQ:VSZ +15° =17 and cosB:% or sinezi—i

or tam9:1§5 so that@ =1.081radians. [Check this working

through to make sure you can see where it comes from.]
The equation can now be written as

17sin(6+1.08) =6
. .16
O  sin(6+1.08) :1% =sin0.3607  (principal value ofsin 15)

0 6+1.081= nir+(-1)"0.3607
0 6 =nm+(-1)"0.3607-1.081

One could proceed to make this more appealing to the eye by
considering the caseseven and odd separately, but there is
little else to be gained by proceeding in this way.

Note on accuracy:although final, non-exact numerical answers
are usually required to three significant places, the 0.3607 and
1.081 in the answer above are really intermediate answers and
hence are given to 4 significant figure accuracy. However,
unless a specific value ofis to be substituted in order to
determine an individual value &, you will not be penalised

for premature rounding provided your working is clear and the
answers correspond appropriately.

This final example illustrates the sort of ingenuity you might
have to employ in finding a general solution of some equation.

Example
Find the values of for which cosx—sin4x=0.

Solution

Using the resulsinA= co%g— AB, the above equation can be

written as
_ im_ . 0
COSX = co%2 4XD
whence
_ arm_, 0
X=2nm+ 2 4XD

15
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i.e.

x:2nn+g—4x or

O 5x:2nn+5 or
2
O x:2n7—T+£ or
5 10

33X ==-2nmm+ —
2

x:2nn—7—T+4x
2

T

:—2nE+E
3 6

X

Wait a moment! Although the second solution is correcs,
merely an indicator of some integer; positive, negative or zero. It
is immaterial then, whether it is denoted as positive or negative:

you could write this solution ax = 2k§+ 5

integerk, or alternatively, asx = 2ng+—.

n

(k=-n) for some

m
6

In this case, the general solution takes two forms. An alternative
approach could have re-written the equation as

. O 0
S|n4x—S|nD2 XD
_ om0
O 4x—nn+(—l)”DE X0
Whenn is odd
4x:n7T—E+x
2
O 3X=nm-—
m T
O X=n—-—=(2n-1) = odd
and whem is even
4x:nn+7—T—x
2
0 Sx=nm+ "
2
m 7T T
O X=n—+—=(2n+1)— even
5 10 ( )10 b )

16
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The very first way might be considered preferable since the
general solution for cos is less clumsy than that for sin.

This example also highlights another important point: two
equivalent sets of answers may loay different from each

other and yet still both be correct.

Exercise 1E

1. Find the general solutions, in degrees, of the
equations
o 1
(b) tan(0-45°)=——
\“3

(a) sihnx=0.766

(c) cosx=0.17 (d) cot(60°-26) =3

(e) 5sinx+3cosx=4  (f) 4cosh+3sinB=2

(g) cosP+cosf=0 (h) tan®4x=3
(i) sin7x—sinx =cos4x

2. Find the general solutions, in radians, of the
equations

Y i
(a) tanx=+/2 (b) CO%Z(+ 60 1

(c) sinx=0.35 (d) se%%)ﬁggzz

1.7 Calculus of the inverse

(e) \6sin@-\2cosh=2
(f) 10co¥—24sinf=13
(g) cosx—cosX =0
(h) tanx+cot2x=0

[Note: cotA= tangg— Agand tan(-A) = —tanA]

(i) 3tarf @+5sed+1=0
(j) cos4x+cosex=cos5

Prove the identitycos4x + 4 cos % =8cos x-3.

Hence find the general solution, in radians, of
the equation2cos® +8cosP =3.

trigonometric functions

The prospect of having to differentiate the functioasin™ x

may seem rather daunting. However, we can witssin™> x as

siny = x. (Taking the principal range valuesgs y< n

2

ensures that this can be done.) Then, using the Chain Rule for

differentiation,

i(siny) :g(siny) d

ay dy
dx dy dx

= cosy&

so thatsiny = x differentiates to give

0 cosyﬂ =1

dx
SR P
dx cosy

17
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Now, using
cofy=1-sin’y,
so that cofy=+1-sin’y = +\1-x
ﬂ:i - 1
X \1-x?

A quick look at the graph afin™ x shows that the gradient of
the inverse-sine curve is always positive (technically speaking,

infinitely so atx = +1) and soy =sin"* x differentiates to -1
ﬂ = 1
dx \1-x?

Activity 6

Use the above approach to fing wheny=tan™x.
X

Find the derivative otos® x also, and decide why it is not
necessary to learn this result as well as the result for the

derivative ofsin™ x when reversing the process and integrating.

The results

% (sin"1 x) -1

\1-x?
d _
o (tanlx) = 1+1x2

and the corresponding integrations

I /1 dx=sintx+C
1-x?

J’1+1 ;dx=tan*x+C (C constant)
X

are special cases of the more general results:

18
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+C for constantC.

The results, in this form, are given in the AEB®oklet of

Formulag and may be quoted when needed.

Activity 7

(a) Use the substitutiorx =asin@ to prove the result

dx . OX0O
—————=sin=——+C.
J’Vaz_xz Oq0

(b) Use the substitutiorx = atan@ to prove the result

(and this is now the standard

dx _ 1 _4[(X0O
— % = —tan " — —+
a? + x2 aa Ugq O C
Example
1
Evaluate I“L
0\ 1-4x2
Solution
1 1
Now 1-4x%2 =4, = -x%2=2 = —x
' T 4
1 1
so that FLZEF ‘dX
0 \1-4x2 2) 1 _ .,
==X . 1
\'4 format, witha = E)
1
14 OxO#
== r3in
2g " Hifg

O
_lgm_ O
=506 %0
=T
12

19
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Example

2 3dx

Evaluate 5
12+X

giving your answer correct to 4 decimal places.

Solution

J'12 23+d:2 - 3{12(\2)(12)1)(2 [soa=12 here]

01 tan‘1%X
2 2

1
w

:% an‘le—tan’l%g [Important note: work in radians]
N N
- %(0.95532— 0.61548

\/

=0.7209 (4 d.p.)

Exercise 1F

Evaluate the following integrals, giving your
answers to four significant figures. [Remember to
work in radians.]

5 dx 3 2dx
O 6. J‘3 —
1\1-8x 2 V3—X
2 Sidx 6 dx
. J:‘8+X2 " J-\z 6+x2
] dx A5
3. — =
J-z 5+9x2 g (2. 9
0 \3/5—2X2
27
4. : dx
J;’\“7—x2 9 J’l dx
0+/4-3x2
Evaluate the following integrals exactly: V43X
V33 * 1Mm-x?0
2 10. dx
> J; 6+2x> o I—l%"'ng
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Chapter 1 Trigonometry

1.8 The 't =tani A’ substitution

You will have already encountered the result:

tan 20 = 2tan@
1-tar? 0

which arises from the identity

tanA+tanB

tanNnA+B)= ———"—
r( ) 1-tanAtanB

Setting 8 =%A then yields the result

tanA= Az wheret = tan% A

In the triangle shown opposit@anA = 12'['[2 , and the h ot

hypotenuseh, is given by Pythagoras' theorem:

142
h? :(1—t2)+(2t)2
=1-2t% +t* + 4t°
=1+2t> +t*
=(u+r?)

So h=1+t?and

2
SinA= AZ andcosA= 1_—tz
1+t 1+t
This would seem, at first sight, to be merely an exercise in
trigonometry manipulation, but these results (which are given in
the AEB'sBooklet of Formulaghave their uses, particularly in
handling some otherwise tricky trigonometric integrations.

Incidentally, the above working pre-supposes that aAgte
acute, and this is generally the case in practice. The identities

are valid, however, for all values &fin the ranged< A<2m
(and hence all values @y).

Although, when%A=g, Sg, tan%A is not defined, the

limiting values of sinA, cosA and tanA are still correct.
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Chapter 1 Trigonometry

Example

Use the substitutioh= tan%x to show that the indefinite

; ; O, 1. 0
integral of sexis In tanDZ+§XD .
Solution
t:tanlx 0 dr_1geely
2 dx 2 2
_ 1
0 2dt—%e6§x%ix
_ 1
O  2dt= SH tar’ Ex%ﬂx
2dt _
1+12
2
Also, secx = L =1+—tz, using one of the above results.
cosx 1-t
Then
1+t?  2dt
secx dx= .
I Il—ﬁ 1+12
2
=[—dt
Il—tz
2
=(——+F——dt
I@—w@+0
_ 1 1 . .
= Er+—ﬁdt by partial fractions
.I +t 1-t
=In[1+t|=In/1-t]|
1+t
=|nl =——
1-t
s 1
tan— +tan= x
Now tangg+%xgz 471 21 =1t (sincetan
1-tan’ —tan=x 17t
4 2
so that
- or, 1
Isecx dx= IntanD4 5 x%

22
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Activity &

Use the above identities for casnd tarx to prove that

1+ tanlx

secx +tanx = 2
1

1- tangx

Oom, 1 0
tanDZ + E XD

given in the AEB'8Booklet of Formulagas is the result

The resultssecx dx = In| secx + tanx | = In are

Icoseo< dx=1In

1
tan—x
2

Since this latter result is much easier to establish, it has been set
as an exercise below.

Example

Use the substitutiornt = tan%& to evaluate exactly

m

2 de
J'o 4 cosf +3sinf
Solution
t=tanto0 N =1seclon 2dt2 =de
2 de 2 2 1+t
Also,
42
cosf=1 t2 andsin@zi2
1+t 1+t

Changing the limits:

6=00t=0 andG:gD t:tan’szl

so
in
£50- (09
Thus
T 1
2 do _[ 1 2dt
IEPO 4.cosd +3sind ? 4-42 6t T 1+
01+ 148

Chapter 1 Trigonometry

23
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_( 2dt
.[04—4t2+6t

_ dt
.IOZ+3t—2t2

H
|
[

ol
(GIN)

o god

o

Ty
i
S
+
=

I
—t T
+

01 1 N
== "In|2-t|+>In[1+t
B 5”‘ | 5”‘ ‘%

_01 O

=5 gIn1+—|n3D D 5
:lln6

5

In2——|n1D

O

In the following exercise, you may have to use @’ or sir*
integrals from the previous section.

Exercise 1G

1.

24

Use the substitution:tan%x to evaluate

s
I31+d7_xz, giving your answer to 4 decimal
sin? x

places.

By writing t = tan%x , show that

(a) J’coseo<dx=|n tan%x +C

—tan x+C
(b )I1+cosx

(c) J’% =2sin* @an1 x@+ C
CO%2 X~/ COSX 2

Use thet :tan%B substitution to evaluate exactly

the integrals

1
2m n tan=6
> do 2
a)[3—— R ]
( )J—O 5+4cos9 (b) o 5+4cosd

1

(c) 7d9
o 3+5sin@

(a) By using the identityanA = 1322

t:tan%A , and settingAzg, show that

tanﬂ =2-y3
12

(b) Evaluate, to four decimal places, the integral

Us

3 de
§2+cos(9

By settingt:tan%x, find the indefinite integral

Isec%x J1-cosx dx



1.9 Harder integrations

In this final section of the chapter, all of the integrations involve
the standard results for strand tant, but you may have to do
some work to get them into the appropriate form.

Before you start, here are a few reminders of the algebraic
techniques which you will need, and also one or two calculus
results. To give you a clear idea of how they work out in
practice, they are incorporated into the following set of
examples.

Example
2
By writing XA TX*2 in terms of partial fractions, show that
(l+ xz)(Z—x)
1 x2+7x+2 . m m
Solution

x*+7x+2 _Ax+B_  C
(1+x2)(2—x) 1+x*  2-X

Multiplying throughout by the denominator

X2 +7x+2= (Ax+B)(2-X) +C(1+x?)
Substituting x =2 gives

20=5C 0O C=4

Substituting x =0 gives
2=2B+4 0 B=-1

Comparingx?® coefficients:

1=-A+4 0 A=3

X2 +TX+2 _3x-1_ 4

Th =
. (1+ xz)(z—x) 1+x* 2-x

L x2+7x+2

1 3x 11 11
Then dx= ax-— dx+4 dx
o(1+>3)(2 - x) .L11+x2 .[)1+ X .I(;Z—X

Chapter 1 Trigonometry
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The reason for splitting the integration up in this way is to
separate the directly integrable bits. Note that

I F(x) dx=In| f(x)|+ constant

f(x)

i.e. when the 'top' is exactly the differential of the 'bottom’, the

integral is natural log of the 'bottom'. No§§(1+ xz) =2x and
d
dx(

but, apart from this, you should see that the three integrals are
log, tar! and log respectively:

34 2x 11
== dx-— dx-—
2L1+x2 I01+x2

= g[ln(xz +1)](1) - [tan‘l x]z ~4[In(2- x)];

2-x) =-1, so the constants in the numerators need jiggling

[Strictly speaking, the log integrals should‘bé +1‘ and

, but 1+ x? is always positive an@ - x is positive forx
between Oand 1.]

= g(ln 2-In1)- (tan‘ll— tan™ O) -4(In1-1In2)

:§In2—E+4In2
2 4

:1—1In2—7—T
2 4
Example
Evaluatef 3x+ dx giving your answer correct to three
V1-3x2

significant figures.

Solution

1

dx

3x+1 1
J’3

33X
dx + [——
\1-3x%2 -[ V1-3%2 J; \V1-3x°
Now the second integral on the RHS is clearly alsiegral.

What about the first one?
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You might just recognise where tlkén the numerator comes from
if you think about it long enough. To save time: try calling

u=+1-3x% = (1—3x2)%;

_1
then du :1(1—3x2) 2(-6x) using the Chain Rule
dx 2
__ ~3x
\1-3x%
So J’de: -J/1-3x2 [This method is referred to as
V1-3x2 'integration by recognition’]
and
1 1 1
5 3x+1 53X 1 5 dx
3 dx= (3 dx+— [3——
J’O V1-3%2 IO \V1-3%2 V3Jo [y
1
1 0O oO,03
:[—V1—3x2]3 L Etin"lgé
0 N\ 3 a Dﬁ
= % 2 +1§+/—1%in‘1i —sin‘log
\'3 /3 \3
=0.539 (to 3 s.f.)
Example

Integrate exactly the integrals

@) 2 dx

3 dx
A N b 2 Br
1 3x%2 - 6x+4 (0) .[;~\/—2+5x—2x2

Solution [Now x? -2x+4 =(x-1)* +}
by completing the square: the

2 2
(a) I ) dx :EI , dx . factor of 3 was taken out first
13x"-6x+4 3J X" -2x+73 in order to make this easier to
cope with.]
. dx . 1
Thisis [ —-——& with a=—"—
1.2 dx [ Ia2+x2 /3

=2 o2
3k 3+(x-1) and ¥ = x-1, which is allowed

when a singlecis involved.]

Chapter 1 Trigonometry
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Oq Oy 100

1 _
=3 éI%tan 151?%
= %[tan‘l([x -1\ 3)];

(tan v3-tan O)

3 3
1 \-2+5x-2x> 22 -1+5x-x?

Completing the square:

—1+gx—x2:—@< x+1§ % SDZ 25 D
B35

This gives
3
integral :if%
25 -6

_\2|:| E 3 %
= 1 Hjq in"tL- 1%
\2
1 . 110
= — sint=
N2 30
=.,2sint=

28



Exercise 1H

1. By expressmg& in terms of partial
(2-x)(4+x?)

fractions, evaluate

1 3x+10 X
.[0(2—x)(4+ x2)

giving your answer to three significant figures.

2. ShowthatIVZLJrzzd =3pHo,m2.
2x 4 030 18

3. Given thaty=+v4-x?, find an expression for

% and deduce thal 4dx C—\4 x2
X

\N4- X2
for some constan€. Hence evaluate exactly
2 —
_I 2X 3dx
1\ 4-x2

4. Determine the values of the constaAtB andC
such that

2
X +2x+7E + Bx + C

1+x? 1+x% 1+x?
Show thatJ' wdx 3-1+In2+ 7
+x2 2

5. By 'completing the square' in each of the

following cases, evaluate exactly the integrals:

7X
ox2-x+1

3
5 dx b
@ ff (b)

2

©) F% (d) 2x2 —2x+5
0 \J1+2x-3x2

dx
ox2+6x+10

(e)

()

0/ x - x?

6.

8.

2
10. (a) Prove thaj s
1

1
*11. Show tha‘f

Chapter 1 Trigonometry

4- 3X dx—ﬂ—llnl&

3.3

Use partial fractions to help evaluate the integral

Show thatJ'

A3 5

.L (1+ xz)(2+x) X

Evaluate the following integrals:
45x+4

a) [ -—d b

@ [Fae o f

Determine the values of the constaAtB andC
for which

4+3x x2
2+x2

X2 +2X-4 _

O 2x-2 (O C
5 = +
X°—=2x+4

Ox2 -2x+40 x?-2x+4

(X)
t

4x 03d
> dx=2In oo

24x+2
(b) Use the result of (a) to evalua_fei5+ 2 dx,
L 5+X

giving your answer correct to 3 decimal
places.

3x dx - Ty

01+6x-3x> 3

"12. Show thatj2 L+x? dx:i(8n+5).
A 1-x2 24
[Hint: *dx X = an
V1-x? V1-x?
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1.10 Miscellaneous Exercises

1.

10.

11.

30

Prove the identitytanf +cotf = 2cosec®. Find,
in radians, all the solutions of the equation

tanx +cotx =8cosX in the interval0<x< 1.
(AEB)

Find, in radians, the general solution of the
equation6tarf 6 =4sin* 6 +1. (AEB)
Prove the identitycot26 +tan6 = cosec®d. Hence
find the values off, in the interval0°< 8 <180°
for which 3(cot29 +tang)® = 4. (AEB)

Find, in terms ofrr, the general solution of the

equationtan* x-4tarf x+3=0. (AEB)

Solve the equation 3tan6-sedd =1,giving all
solutions in the interva0°< 6 <360°. (AEB)
By expandingcoq 6-60°), express
7cosf+8cog6-60°) in the form13sin(6+a),
where0°<a <90°, and state the value af to

the neares0.1°. Hence find the solutions of the
equation7cosd +8cog6-60°)=6.5 in the

interval 0°<8<360°, giving your answer to the
nearest0.1°. (AEB)

Find all solutions in the intervdl°< 8<360° of
the equatiorsin@-cosf =k when
(@) k=0, and (b)k=1. (AEB)
Find the general solution of the equation
sin2x+2cog x=0 for x radians.
Show that
sin 2x +sin 4x + sin 6x = sin 4x(1+ 2 cos X)
Hence prove the identity

sin 3xsin 4x = (sin 2x +sin 4x +sin 6x)sinx

(AEB)

gro_ 1
2t \6+~2
Prove the identity
(cosA+cosB)® +(sinA+sinB)? =2+2co{A- B).
Hence solve the equation

(cos 40 +cosh) +(sin 40 +sin@)’ = 2+ 3sin39
giving the general solution in degrees.

Deduce thasin (AEB)

Given that-1<x,y<1, prove that

_ _ _ Ox+y0d
tantx+tanty=tan?
y %—xyg

Deduce the value ofan$+tan™ 1 +tan™1
(AEB)

12.

13.

14.

15.

17.

Expressf(x)z( 3rx in partial

1+ x2)(1+2x)
fractions. Prove that the area of the region
enclosed by the curve with equatigre f(x), the

coordinate axes and the line=1 is 7—T+1IanD.
4 2 [0
(AEB)

Expressscosd +2siné in the formRsin(6+a),
where R>0 and0°<a <90°. The functionf is
defined by f(6) =6-5cos9-2sin@ for

0°<6<360°. State the greatest and least values
of f and the values o8, correct to the nearest
0.1°, at which these occur.

1 x dx

Show that 3
ol+ X

:%Inz. Hence using

1
integration by parts, evaluahétan'lx dx. (AEB)
0

16-X . . .
Expres in partial fractions.
P (2-x)(3+x P
Hence show that
1 16-x 16, 5m
dx=In—"+"— AEB
J:J(Z—x)13+x2i 3 6.3 (AEB)

sin30

. Express——— in terms of co#. Hence show

sin@
that if sin380 =Asin260, whereA is a constant,
then eithersin@=0 or 4cos 8-2A cosf-1=0.
Determine the general solution, in degrees, of the
equationsin39 =3sin26. (AEB)

Express3cosx—4sinx in the form Aco{x+a),

where A>0 and a is acute, stating the value of
a to the neares0.l°.

(a) Given thatf(x)=$:
3cosx—4sinx+7
(i) Write down the greatest and least values of
f(x) and the values of to the neares0.1° in

the interval-180°< x <180° at which these
occur;

(ii) Find the general solution, in degrees, of the

equationf(x)zl—:.

(b) Solve the equatioBcosx—4sinx =5cos X,
giving your answers to the neareftl’ in
the interval0°<x<180°. (Oxford)
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18. Given that3cosf +4sinf = Rco{6-a), where 22. Use identities focogC+ D) and cofC-D) to
R>0 and0< asg, state the value dR and the prove thatcosA+cosB = ZCO%A; Bgco A; BB,
value oftana . Hence find, in terms ofr, the general solution

(a) For each of the following equations, solve for  of the equationcos59 +cosf =cos ¥ .
0 in the interval0< 8<2m and give your
answers in radians correct to one decimal
place:

Using both the identity focosA+cosB, and the
corresponding identity fosinA-sinB, show that

(i) 3cosh+4sing=2 cos5x —sina = 2sina(cos4x +cos).
i) 3cosd+4sing =
The trianglePQRhas angleQPR=a(# 0), angle

(i) 3cosP+4sin28 =5coh.
PQR=5a and RP=3RQ. Show that

(b) The curve with equation sin5a = 3sina and deduce thatos4a +cos2o =1.
y= 10 . . betweenx = -1 and By solving a quadratic equation Bos2n, or
3cosx+4sinx+7 otherwise, find the value odr, giving your
X = 1T, cuts they-axis atA, has a maximum answer to the neareét1°. (AEB)
point atB and a minimum point a€. Find
the coordinates oA, B andC. (AEB) .3 Given that x-x>  _ A L Bx+C
' (2—x)(x2+1) 2-x  x*+1°
. . o o
19. Given thatf(x)—95|n§<+€D+500%<+§D, use determine the values &, B andC. A curve has
. o Tx=x?
the formulae forsin(A+B) and co{A+B) to equationy=—""_——_ Prove that the area
2-x)(x“+1
expresd(x) in the formCcosx + D+ 3sinx, where _ ( )( ) _
C andD are integers. Hence show tH&t) can of the region enclosed by the curve, thaxis
be written in the form/61cogx-a)giving a and the linex=1 is LIn2-7=. (AEB)
value forain radians to three significant figures. 2 4
(Oxford) 24. Use the substitutior=1+2tan@ to evaluate the
3
U 1+tanf)’ i X 4x givi
20. Prove the |dent|t)1+sm2957( an6) mtegralL X2 —2x+5dX giving your answer

1+tan’ 9

using the substitution=tan@, or otherwise, find
the general solution, in radians, of the equation 5

(2-tang)(1+sin20) = 2. (AEB) , _ ,
] ] ] expressions as the difference of two sines, prove
21. (a) Starting from the identity the identity

cog A+ B) = cosAcosB-sinAsinB,

correct to two decimal places. (AEB)

By expressin(jzcosiesing and other similar

(200539+200529+2c039+1)sing =sin’?.

prove the identity 2
cos2=2cos 6-1. Expresscos® andcos2 in terms ofcosd and
(b) Find the general solution of the equation deduce the identity
sin@+tanfcos2 =0, giving your answer in . .
radians in terms Oﬁ.g 9y (8cos°‘6+4co§ 9—40059—1)5|ngssm7—20.
(c) Prove the identity
Hence, or otherwise, show tham@ cos4—n
2cog 0-2cog 26 =cosB-cos . ’ ’ 7
6m .
(d) By substitutingG:LsT in the identity in (c), and cos—- are the roots of the equation
8x3+4x%-4x-1=0. (AEB)
md 2rn0_1 _ . .
prove thatco%gm— CO%?D—E- 26. Assuming the identities

sin39=3sinf-4sin° 6 and
cosP =4cos 6-3cosh
prove that

cos5 =5c0s9 -20cos 0 +16¢0S 6.

(e) Hence find the value odo%]—s-[g in the form

a+by5, stating the values of andb.
(AEB)
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(a) Find the set of values & in the interval
0< 6 < for which cos >16c0S 6.

(b) Find the general solution, in radians, of the
equationcosx+3cosX+cosx=0. (AEB)
27. Expressf(6) = 4cosf +3sin@ in the form

Rcog6-a) whereR>0 and0<a<g.

(a) A rectangleOABCis formed from the origin,
the pointA(4cosf, 0), the pointB, and the

point C(0,3sing). State the coordinates Bf
and express the perimeter of the rectangle in
terms of f(6). Hence find the greatest
perimeter of the rectangle @ varies in the

range0< ng and state the coordinates Bf

for which this greatest perimeter occurs.

(b) A curve has the equation

1 g
=~ D<x<—. Show that
Y (4cosx+3sinx)’ Eb 20

the region enclosed by the curve, thaxis,

and the linesx=0 andx:E has areai.

(AEB)
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