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Chapter 2  One-Dimensional Motion

2 ONE-
DIMENSIONAL
MOTION

Objectives
After studying this chapter you should

• be able to derive and use formulae involving constant
acceleration;

• be able to understand the concept of force;

• be able to use Newton's Laws of Motion in various contexts;

• know how to formulate and solve equations of motion;

• be able to use the principles of conservation of momentum.

2.0 Introduction
The physical world is full of moving objects.  Kinematics is the
study of motion; dynamics is the study of forces that produce
motion.  In this chapter the mathematics for describing motion is
developed and then the links between the forces acting and the
change in motion are described.

To describe the motion of real objects you usually need to make
simplifying assumptions.  Perhaps the most important
simplification in applied mathematics is ignoring the size and
shape of an object.  In Chapter 1 the notion of replacing a real
object by a point was introduced.  For example, in defining
Newton's Law of Gravitation for the force acting on an object
near to the earth's surface, the object and the earth were
considered as points.  Now the normal terminology is to
consider objects as particles, and this is then called the particle
model.

This simplification provides a starting point for many problems,
but it does mean that some features of the motion of objects
have to be ignored.  For example, consider the description of the
motion of a tennis ball.  At first sight the ball may appear to
follow the typical parabolic path of any object thrown near the
earth's surface (such motions are studied in detail in Chapter 5).
However, a closer study of the motion shows that the ball will
be spinning, causing it to swing and dip.  The particle model
will be good enough to describe the overall parabolic motion but
the effects of spin will have to be neglected.  A less simple
model which includes the features of size and shape would be
required to describe the effects of spin.
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Consider the motion of a snooker ball .  It is possible to make
the ball slide or roll on the table or to move with a
combination of both types of motion.  For which type of
motion will the particle model be most appropriate?  What
features of the motion of a rolling snooker ball will be
neglected with the particle model?

This chapter will concentrate on the description of objects which
move along a straight line.  The objects will be modelled as
particles, and represented on diagrams by 'thick' points.

2.1 How to represent motion
Displacement
Typical of the questions to be answered are:  if a ball is thrown
vertically upwards, how long does it take to fall to the floor?
What is its velocity as it hits the floor?

To answer questions like these you need to find the position and
velocity of the ball as functions of time.  The first step is to
represent the ball as a particle.  The position of a particle
moving in a straight line at any given instant of time is
represented on a straight line by a single point.  In order to
describe the exact position you choose a directed axis with a
fixed origin 0 and a scale as shown opposite.

The position of the particle relative to the origin is called the
displacement and is often denoted by the letter s measured in
metres (m).

The choice of the origin in a problem will depend on what
motion is being modelled.  For example, in the problem of
throwing a ball in the air an origin at the point of release would
be a sensible choice.

Displacement - time graphs
As a particle moves the displacement changes so that s is a
function of time, t.  A graphical method of showing motion is
the displacement-time graph which is a plot of s against t.  As
an example, the figure shows the displacement-time graph for
the motion of a ball thrown in the air and falling to the floor.

From the graph a qualitative description of how the position of
the particle varies in time can be given.  The ball starts at the
origin and begins to move in the positive s direction (upwards)
to a maximum height of 5 m above point of release.  It then falls
to the floor which is 2 m below the point of release.  It takes just
over 2 seconds to hit the floor but this part of the motion has not
been shown.
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Activity 1 Interpreting displacement - time
graphs

Discuss the motion represented by each of the displacement -
time graphs shown here.

Velocity
Once the position of a particle has been specified its motion can
be described.  But other quantities, such as its speed and
acceleration, are often of interest.  For example, when travelling
along a road in a car it is not the position that is of interest to
the police but the speed of the car!

The statement that the speed of a car on the M1 is 60 mph
means that if the speed remains unchanged then the car travels
for 60 miles in one hour.  However the statement gives no
information about the direction of motion.  The statement that
the velocity of a car on the M1 is 60 mph due north tells us two
things about the car.  First its speed is 60 mph (the magnitude)
and the car is heading due north (the direction).  Quantities
which have magnitude and direction are called vectors and
these are discussed more fully in Chapters 3 and 4.

The average velocity of a particle over a given time period, T
say, is probably familiar to you and is defined by

  

average velocity =  
displacement
time taken

.
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Such a definition does not describe the many changes in velocity
that may occur during the motion of the particle.

In the time interval T from 
  

t = t0  to  t = t0 + T  the distance
travelled is 

  

s t0 + T( ) − s t0( ) so the average velocity is

  

s t0 + T( ) − s t0( )
T

Now the quantity that is more interesting is not the average
velocity of the particle but the instantaneous velocity.  You will
have seen from the definition of differentiation in the
Foundation Core that the link between average changes and
instantaneous changes is the derivative.  As the time interval T
tends to zero the ratio

  

s t0 + T( ) − s t0( )
T

tends towards the derivative of s(t).

Thus velocity is defined in the following way.

If s(t) is the displacement of a
particle then its velocity is defined
by

  

v =
ds

dt

In the SI system of units velocity
is measured in metres per second

written as 
  

ms−1.

Activity 2 Limits of average velocity

The displacement of a particle is given by

  

s = t2 + 2t .

Calculate the average velocity of the particle during each of the
time intervals

from  
  

t = 1  to  t = 2

from  
  

t = 1  to  t = 1.1

from  
  

t = 1  to  t = 1.01

from  
  

t = 1  to  t = 1.001.
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Estimate the value that the average velocity is tending towards
as 

  

t → 1 .

Does this value agree with  
  

ds

dt
 when 

  

t = 1?

The definition of the velocity as a derivative can be interpreted
geometrically as the slope of the tangent to the displacement -
time graph.  For example, consider the displacement - time
graph opposite for the ball thrown into the air:

The slopes of the tangents to the graph at each of the points

  

t = 0.5, 
  

t = 1 and  
  

t = 1.5 are equal to the velocities at these
points.

When  
  

t = 0.5 (point A) the slope of the tangent is given by

  

2.5

0.5
= 5 ms−1.  At 

  

t = 1 (point B) the slope is zero and  at 
  

t = 1.5

(point C) the slope is 
  

−5 ms−1.  You can now say more about the
motion of the ball.  At point A, the ball is going upwards with

speed  
  

5 ms−1.  At point B the ball is instantaneously at rest and
it is at its highest  point.  At point C the ball is falling to the

floor with speed  
  

5 ms−1 .

For one-dimensional motion the sign of the velocity indicates
the direction of motion of the particle.

If 
  

v > 0 then s is increasing with time since 
  

ds

dt
> 0.

If 
  

v < 0 then s is decreasing with time since  
  

ds

dt
< 0.

The magnitude of the velocity of a particle is called its speed.

For example, if 
  

v = −3 ms−1 then you  can say that the particle

moves with a speed  
  

3 ms−1 in the direction of s decreasing.

Velocity - time graphs
If you find the velocity, v, at several times, t, then a graph of the
velocity against time is called a velocity - time graph.  The
figure shows the velocity - time graph for the motion of a ball
thrown into the air and falling to the floor.

The ball begins its motion with a speed of 10 
  

ms−1 and this
speed falls to zero during the first  second of the motion.  The

speed then increases to approximately 12  
  

ms−1 when the ball
hits the floor.
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Activity 3 Interpreting velocity - time graphs

The diagram shows the velocity -time graph for Graph 1 in
Activity 1.

Describe the motion of the particle from this graph.

Sketch the velocity - time graphs for the other displacement  -
time graphs in Activity 1.

Describe the motion of the particle in each case.

Acceleration
Chapter 1 identified the change in motion as an important
quantity in the link between force and motion.  Hence in many
situations it is not the velocity that is important but the change
in velocity.  This is described by the acceleration.

You have seen that the velocity is defined as the rate of change
of position; the acceleration is defined in a similar way to the
velocity.

If v(t) is the velocity of a particle
at time t then the acceleration of
the particle is defined by

  

a =
dv

dt
.

In the SI system of units,
acceleration is measured in metres
per second per second,  written as

  

ms−2.

The acceleration can be obtained from the slope of the
velocity - time graph.  For example, for the motion of the ball
thrown into the air, the diagram shows the acceleration - time

graph.  The acceleration is constant with magnitude 10 
  

ms−2.
The negative sign implies that the velocity decreases
continuously with time.

On a diagram velocities are shown with single arrows and
accelerations with double arrows.

t (s)

a (ms-2)

–10

a = –10  ms-2

O

s = 5  ms-1

s

t (s)

v (ms-1)

0

0
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Activity 4 Interpreting acceleration - time graphs

Sketch the acceleration - time graphs from your velocity - time
graphs in Activity 3.

Describe the motion of the particle in each case.

Relationships between displacement,
velocity and acceleration
In this section you have seen that the motion of a particle along a
straight line can be described by a displacement s(t).  The velocity
and acceleration of the particle are then given by

  

v =
ds

dt
  and  a =

dv

dt

respectively.  Graphical descriptions of motion are given by
displacement - time, velocity - time and acceleration - time graphs.

Now in mechanics problems the acceleration is often known and
the velocity and displacement have to be found.  This is achieved
by integration.  You will know from your knowledge of pure
mathematics that integration is equivalent to finding the area under
a graph.

Activity 5 Finding a velocity and displacement

The graph opposite shows the acceleration of a particle over 4
seconds of its motion.  The particle starts from rest, at 

  

t = 0.

Estimate the velocity of the particle at the end of 0.5, 1, 1.5, 2, 2.5,
3, 3.5, 4 seconds.

Use your results to sketch a velocity - time graph for the particle.

From your velocity - time graph estimate the distance travelled
during the 4 seconds of motion between  

  

t = 0 and  
  

t = 4.

The equation for the graph above is 
  

a = 2 + t .  By integrating a to
find v and then integrating v to find s, check your answer.

t (s)

a (ms-2)

6

4

2

0
1 2 3 4
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Exercise 2A
1. Sketch displacement - time and velocity - time

graphs for the following:

(a) A car starts from rest and increases its

velocity steadily to 10 
  

ms−1  in 5 seconds.
The car holds this velocity for another 10
seconds and then slows steadily to rest in a
further 10 seconds.

(b) A ball is dropped on a horizontal floor from a
height of 3 m.  The ball bounces several
times before coming to rest.

(c) A person jumps out of an aircraft and falls
until the parachute opens.  The person glides
steadily to the ground.

2.

The diagram represents the motion of an object
for 30 seconds.  Calculate the acceleration for
each of the following intervals:

(a) 
  

0 < t < 10   (b) 
  

10< t < 15 (c) 
  

15< t < 30

Calculate the displacement of the object over the
30 seconds.

3.  
  

t(s)  0  1   2    3    4    5    6   7    8

  

v ms−1( )   0  8  16  24  32  30  24  14   0

(a) Plot these figures on a velocity - time graph.

(b) Verify that for 
  

0 ≤ t ≤ 4 , the figures are
consistent with constant acceleration.

(c) Calculate an estimate for the acceleration at

  

t = 6.

(d) Calculate an estimate for the displacement
after 8 seconds.

4. During the launch of a rocket the velocity was
noted every second for 10 seconds and the
following table of values obtained.

  

t(s) 0 1  2    3 4     5      6      7     8     9   10

  

v kph( ) 0  32  80 128  176  224  272  320 368 400 448

Estimate the distance travelled by the rocket
during the first 10 seconds of its motion.
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5. A road has a sharp bend around which
approaching traffic cannot be seen.  The width of
the road is 6 m and the speed limit is 30 mph.
The bend is on the near side of the road.  How
far from the bend should a pedestrian cross the
road to avoid an accident?  Assume the man
walks at 3 mph.

6. A particle is set in motion at time 
  

t = 0  and its

position is subsequently given by 
  

s = 4+ 5t − 2t2 .

(a) Calculate the velocity of the particle after    1
second and after 2 seconds.  What is the
speed and direction of motion at each of
these times?

(b) Find the time at which the particle is
instantaneously at rest.

(c) Calculate the acceleration of the particle at

  

t = 1 s and 
  

t = 2 s.

(d) Describe the motion of the particle.

7. Repeat Problem 6 for

(a) 
  

s = t2 − 4t +1

(b) 
  

s = 3+18t − 7.5t2 + t3.

8. The acceleration of a particle is given by

  

a = −10 ms−2 .  At the instant 
  

t = 1 s, the particle is

at position 
  

s = 2 m and has velocity 3 
  

ms-1 .

(a) Find the velocity and displacement of the
particle as functions of time.

(b) Calculate the position and velocity of the
particle when 

  

t = 2 s.
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velocity

time

v - u

v

u
t

2.2 Modelling motion under
constant acceleration

There are several simple formulae which can be used when
dealing with motion under constant (also known as uniform)
acceleration.

Discuss common types of motion where you think that
constant acceleration is likely to occur.

The diagram represents the motion of an object with initial
velocity u and final velocity v after t seconds has elapsed.  The
gradient of the line is calculated from the expression

  

v − u

t
.

Since the gradient is equal to the value of the acceleration, a,
then

  

a =
v − u

t .

This can be rewritten as

  

v = u + at (1)

The area under the velocity - time graph is equal to the
displacement of the object.  Using the rule for the area of a
trapezium gives

  

s =
u + v( )t

2
(2)

Note that  
  

u + v( )
2

 is the average velocity of the object, so (2) is

the algebraic form of the result that the displacement is equal to
the average velocity multiplied by the time.

Example

A motorbike accelerates at a constant rate of  3 
  

ms−2.  Calculate

(a) the time taken to accelerate from 20 mph to 40 mph.

(b) the distance in metres covered during this time.

Solution
You can use equation (1) to find the time and then equation (2)
to find the distance travelled.  But first you must convert mph to

  

ms−1.
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Using the conversion rule 5 miles   ≈ 8 kilometres,  gives

  

10 mph= 16 kph=
16×1000 

60× 60
 ms−1

   
  

= 4.445 ms−1.

Hence 20 mph    = 8.89 
  

ms−1 and 40 mph    =  17.78 
  

ms−1.

(a) Using equation (1) the time taken to accelerate from

8.89 
  

ms−1 to 17.78 
  

ms−1 at 3 
  

ms−2 is given by

  

t =
17.78− 8.89

3
= 2.96 s (to 3 sig. fig.).

(b) Using equation (2) the distance travelled in this time is

  

s =
8.89+17.78

2







× 2.96= 39.5 m.

There are two further useful formulae which can be obtained
from (1) and (2).  Writing (1) in the form

  

t =
v − u

a

and substituting into (2) gives

  

s =
u + v

2







v − u

a







,

so
  

s =
v2 − u2

2a







.        Remember

  

v2 − u2 = v − u( ) v + u( )

This expression can be rearranged to give

  

v2 = u2 + 2as (3)

Similarly, substituting for v from (1) into (2) gives

  

s =
u + u + at

2







t

or
  

s = ut + 1
2 at2 (4)

Formula (3) is useful when the time t has not been given or is
not required, while formula (4) is useful when the final velocity
v has not been given nor is required.
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Example

A car accelerates from a velocity of 16 
  

ms−1 to a velocity of

40 
  

ms−1 in a distance of 500 m.  Calculate the acceleration of
the car.

Solution

Using (3)
  

402 = 162 + 2 × a × 500

    
  

a =
1600− 256

1000
= 1.344 ms−2.

Example

A car decelerates from a velocity of 36 
  

ms−1.  The magnitude of

the deceleration is 3 
  

ms−2.  Calculate the time required to cover
a distance of 162 m.

Solution
When an object is slowing down it is said to be decelerating.
You then use equations (1) - (4) but with a negative value for a.
In this problem set 

  

a = −3.

Let t seconds be the time required to cover 162  m.

Using (4),
  

162= 36t + 1
2 × −3( ) × t2.

Rearranging this gives

  

1.5t2 − 36t +162= 0.

Dividing by 1.5 gives

  

t2 − 24t +108= 0.

Factorizing gives

  

t − 6( ) t −18( ) = 0,

so that
  

t = 6 or18.

Discuss the significance of the  two solutions to the
quadratic equation.  Which is the required time?
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Activity 6 Stopping distance on the road

The Highway Code gives the following data for overall stopping
distances of vehicles at various speeds.

Speed (mph) Thinking    Braking    Stopping
Distance    Distance   Distance
 (metres)    (metres)   (metres)

30 9 14 23

50 15 38  53

70 21 75 96

What is meant by the thinking distance?

Show that the deceleration during braking is roughly the same at
each of the three speeds.

Use a graph plotter to fit a suitable curve through the data for
speed and stopping distance.  Use your results to estimate the
speed corresponding to a stopping distance of 150 metres.

The amber warning light on traffic signals is intended to give
drivers time to slow before a red stop light.  Time the duration
of amber lights in your locality.  Do they give sufficient warning
at the speed limit in operation on the road?

Exercise 2B
1. A car accelerates uniformly from a speed of     50

kph to a speed of 80 kph in 20 seconds.

Calculate the acceleration in 
  

ms−2 .

2. For the car in Question 1, calculate the distance
travelled during the 20 seconds.

3. A train signal is placed so that a train can
decelerate uniformly from a speed of 96 kph to
come to rest at the end of a platform.  For
passenger comfort the deceleration must be no

greater than 0.4 
  

ms−2 .  Calculate

(a) the shortest distance the signal can be from
the platform;

(b) the shortest time for the train to decelerate.

4. A rocket is travelling with a velocity of 80 
  

ms−1 .
The engines are switched on for 6 seconds and

the rocket accelerates uniformly at 40 
  

ms−2 .
Calculate the distance travelled over the
6 seconds.

5. In 1987 the world record for the men's 60 m race
was 6.41 seconds.

(a) Assuming that the race was carried out under
constant acceleration, calculate the
acceleration of the runner and his speed at
the end of the race.

(b) Now assume that in a 100 m race the runner
accelerates for the first 60 m and completes
the race by running the next 40 m at the
speed you calculated in (a).

Calculate the time for the athlete to complete
the race.

6. The world record for the men’s 100 m was 9.83 s
in 1987.  Assume that the last 40 m was run at
constant speed and that the acceleration during
the first 60 m was constant.

(a) Calculate this speed.

(b) Calculate the acceleration of the athlete.
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7. Telegraph poles, 40 m apart stand alongside a
railway line.  The times taken for a locomotive
to pass the two gaps between three consecutive
poles are 2.5 seconds and 2.3 seconds
respectively.  Calculate the acceleration of the
train and the speed past the first post.

8. The world record for the women’s 60 m and
100 m are respectively 7.00 seconds and 10.49
seconds.  Analyse this information using the
method given in Question 6.

2.3 How do bodies move under
gravity?

For many centuries it was believed that:

(a) heavier bodies fell faster than light ones

and

(b) the speed of a falling body was constant.

Discuss why such views were held and suggest ways in which
they could be refuted.

Galileo Galilei (1564 - 1642) was the first person to state
clearly that all objects fall with the same constant acceleration.
Since there were no accurate timers available in the seventeenth
century, he demonstrated this principle by timing balls which
were allowed to roll down inclined planes.

Activity 7 Galileo’s rolling ball experiment

You will need balls of different masses, a table, some blocks,
four metre rulers and a stop watch.

(a) Use the blocks to set up the table as shown in the diagram
so that it takes about 4 seconds for the ball to roll down.
Fix the rulers to make a channel down which the ball can
roll.  Measure the time it takes the ball to roll distances of
0.5, 0.75, 1, 1.25, 1.5, 1.75 and 2.0 m.  Repeat the
experiment and find the average time in each case.

(b) Find a relationship between the distance travelled, s metres,
and time taken, t seconds.

(c) Do your results support Galileo’s statement?

Modern determination of the acceleration of falling bodies gives

values in the region of  9.81 
  

ms−2 although the value varies
slightly over the surface of the Earth.  The magnitude of this
acceleration is denoted by g.  A common approximation is to

take 
  

g = 10 ms−2  and this value will be used in this text for
solving problems.

9. A set of traffic lights covers road repairs on one
side of a road in a 30 mph speed limit area.  The
traffic lights are 80 m apart so time must be
allowed to delay the light changing from green

to red.  Assuming that a car accelerates at 2
  

ms−2

what is the least this time delay should be?

10. A van travelling at 40 mph skids to a halt in a
distance of 15 m.  Find the acceleration of the
van and the time taken to stop, assuming that the
deceleration is uniform.
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Since the acceleration acts towards the Earth’s surface, its sign
must be opposite to that of any velocities which are upwards.

When dealing with problems involving motion under gravity,
you can use the formulae for constant acceleration developed in
the previous section.

Example
A ball is thrown vertically upwards with an initial speed  of

  

30 ms−1.   Calculate the height reached.

Solution

Since the ball slows down, take 
  

a = −g = −10 ms−2 .

Using (3)
  

0 = 302 − 2 ×10× h

where  h  is the maximum height reached.

Thus
  

h =
900

20
= 45 m (to 2 significant figures).

Example

A ball is thrown vertically upwards with a speed of 40 
  

ms−1  .
Calculate the time interval between the instants that the ball is
20  m above the point of release.

Solution

Using (4) with 
  

a = −g = −10 ms−2

 
  

20 = 40t − 0.5×10× t2

where t seconds is the time passed since the ball was thrown up.

  

5t2 − 40t + 20 = 0

 
  

t2 − 8t + 4 = 0.

Using the quadratic formula

  

t =
8± 48

2
= 7.62  or  0.54.

The ball is 20 m above the point of release twice, at 
  

t = 0.54 s
(on way up) and  

  

t = 7.62 s (on way down).

The required time interval is 
  

7.62− 0.54= 7.08  seconds.

h

at the top of
the flight the

velocity of the
ball is zero
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Two useful formulae which can be used on a body falling from
rest through a height h metres can be found by putting 

  

u = 0,

  

a = 10 and  
  

s = h in equation (4) to give

  

t =
2h

g
=

h

5
(5)

and by putting 
  

u = 0, 
  

a = 10 and  
  

s = h in equation (3) to give

  

v = 2gh = 20h (6)

where  t is the time of fall in seconds, v 
  

ms−1 is the final

velocity and 
  

g = 10 ms−2.

Activity 8 Estimating the value of  g

You will need a bouncy ball and a metre rule for this activity.

Drop the ball onto a hard floor from a height of 2  m.  Measure
the height of the rebound.  Repeat this several times and average
your results.  Now drop the ball from the rebound height and
measure the new height of rebound.  Repeat this procedure
several times and average your results.  Keep measuring new
rebound heights for two further cases.

Now drop the ball from 2  m and measure the time elapsed until
the fourth bounce with the floor.  Repeat several times and
average your results.

Show that the total time,  t,  up to the fourth bounce is

  

t =
2h1

g
+ 2

2h2

g
+ 2

2h3

g
+ 2

2h4

g
.

Use this, together with your measurements, to calculate a value
for g.

Exercise 2C

(Take 
  

g = 10 ms
−2

)

1. A ball is dropped on to level ground from a
height of 20 m.

(a) Calculate the time taken to reach the
ground.

h1

h2 h3 h4

The ball rebounds with half the speed it strikes
the ground.

(b) Calculate the time taken to reach the ground a
second time.
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2. A stone is thrown down from a high building

with an initial velocity of 4 
  

ms−1.  Calculate the
time required for the stone to drop 30 m  and its
velocity at this time.

3. A ball is thrown vertically upwards from the top
of a cliff which is 50 m high.  The initial velocity

of the ball is 25 
  

ms−1 .  Calculate the time taken
to reach the bottom of the cliff and the velocity
of the ball at that instant.

4. The diagram show three positions of a ball which
has been thrown upwards with a velocity of

u 
  

ms−1

Position  A  is the initial position.

Position  B  is halfway up.

Position  C is at the top of the motion.

Copy the diagram and for each position put on
arrows where appropriate to show the direction
of the velocity.

On the same diagram put on arrows to show the
direction of the acceleration.

5. An aircraft is flying at a height of 4 km when it
suddenly loses power and begins a vertical dive.
The pilot can withstand a deceleration of 5 g
before becoming unconscious.  What is the
lowest height that the pilot can pull out of the
dive ?

2.4 What causes changes in
motion?

Think about the following types of motion:

• an athlete running around a bend in a 200 m  race;

• a ball being thrown over a fence;

• a car braking to a halt;

• a rocket accelerating in space;

• a snowball picking up snow as it rolls on level ground.

In each case there is a change in motion.

Discuss what these changes are in each case.

A change in motion is caused by a force.  In medieval times it

6. If the Earth is assumed to be a perfect sphere
then the acceleration due to gravity at a height   h
m above the surface of the Earth is given by

  

k

R+ h( )2

where R is the radius of the Earth in metres and k
is a constant.

(a) Given that R   =  6400 km and at the Earth's

surface 
  

g = 9.8 ms−2  , estimate the value of  k.

(b) Use your calculator to find the height at
which the acceleration differs by 1% from its
value at the Earth’s surface.

(c) Use a graphic calculator to draw the variation
of acceleration with height.

7. When a ball hits the ground it rebounds with half
of the speed that it had when it hit the ground.  If
the ball is dropped from a height h, investigate
the total distance travelled by the ball.

8. One stone is thrown upwards with a speed of

2 
  

ms−1  and another is thrown downwards with a

speed of 2 
  

ms−1 .  Both are thrown at the same
time from a window 5 m above ground level.

(a) Which hits the ground first?

(b) Which is travelling fastest when it hits the
ground?

(c) What is the total distance travelled by each
stone?

A

B

C
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was thought that a force was required to keep a body in motion
and that the only state which corresponded to an absence of
forces was a state of rest.

The true relationship between forces and motion was stated by
Newton using ideas of Galileo.  In the absence of any forces
there must be no change in the motion of the body, that is, the
body must be at rest or moving with uniform velocity.  Although
first stated by Galileo, this is now generally known as Newton’s
First Law of Motion.

Newton’s First Law
A body remains in a state of rest or moves with uniform motion,
unless acted on by a force.

Activity 9 The chute experiment.

You will need a level table, 2 metre rules, a billiard ball, a chute
and a stopwatch.  You can make a chute out of a piece of folded
cardboard.

Use the metre rules to make a channel on the table.

Allow the ball to roll down the chute so that it takes about 3
seconds to travel 1 m.  Mark the point on the chute from which
you release the ball.

Releasing the ball from this mark for each run, time the ball to
roll 0.25, 0.5, 0.75 and 1 m.

Draw a displacement - time graph.

What forces act on the marble as it rolls on the table ?
Are your results consistent with Newton’s First Law?

If the total force acting on a body is zero (for example, if equal
and opposite forces act on the same body), then the body
remains at rest or moves in a state of uniform motion.

Newton’s First Law defines what happens to the motion of a
body if no force is present.  When a force acts on a body, there
is a change in motion.  Firstly, you need a clear definition of
how to measure the motion of a body.  Newton did a great deal
of experimental work on this and came to the conclusion that the
motion of a body was measured by the product of its mass and
its velocity.  This quantity is known as the momentum of the
body.

Momentum 
  

= m× v
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A force produces a change in the momentum of a body, through
a combination of changes in mass and/ or velocity.

Discuss the change in momentum in each of the cases given
at the beginning of the section.

The physical law relating change in motion and the force acting
on a body is given by Newton’s Second Law.

Newton’s Second Law
The rate of change of momentum of a body is proportional to the
applied force.

In the case where the mass of the body is constant, this leads to
the result that the force is proportional to the product of the mass
and the acceleration of the body.  By choosing appropriate units
to measure mass, acceleration and force, the constant of
proportionality can be made equal to one so that

 
  

F = ma

where m is in kilograms ( kg)

a  is in metres per second per second  (
  

ms−2)

F  is in newtons.

One newton is the force sufficient to produce an acceleration of
one 

  

ms−2 in a body of mass one kg.  The abbreviation for a
newton     is  N.

The approximate magnitude of some typical forces are

• force exerted by an adult arm    ≈ 250 N

• force exerted by Earth’s gravity on an adult    ≈ 700 N

• force exerted by a car engine    ≈ 2000 N

Example
A car of mass 1100 kg can accelerate from rest to a speed of
30 mph  in 12 seconds.  Calculate the force required.

Solution

Using the conversion  
  

10 mph= 4.445 ms−1 gives

  

30 mph= 13.3 ms−1

Assuming that the car accelerates at a constant rate, then using

  

v = u + at with v = 13.3,u = 0 and t = 12 gives

  

a =
13.3

12
= 1.11 ms−2 .
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Applying Newton's Second Law gives

  

F = ma

   
  

= 1100×1.11

   
  

= 1220 N(to 3 significant places).

Example
A force of magnitude 20 N is applied to a particle of mass 4 kg
for 6 seconds.  Given that the initial velocity of the body  is 15

  

ms−1 ,

(a) calculate the acceleration,  a, of the body;

(b) calculate its velocity,  v, after 6 seconds.

After 6 seconds a force,  F, is applied to bring the body to rest
in a further 125  m.

(c) Calculate the magnitude of the force.

Solution
(a) Using Newton’s Second Law,

  

20 = 4a

  

a = 5 ms−2

(b) Using (1),  
  

v = 15+ 5× 6 = 45 ms−1

(c) Since the particle is slowing down, the acceleration in
equation (3) will be negative so put 

  

a = −A .  Then using (3)

  

0 = 452 − 2 × A×125.

Solving for A,

  

A =
452

250
= 8.1 ms−2

Using Newton’s Second Law,

  

F = 4 × 8.1= 32.4 N.

Activity 10 Forces produced by car engines

(a) Collect data on typical accelerations and masses of cars.
Calculate the average force produced during the
acceleration.

(b) Use the data for braking distances shown in Activity 6 to
calculate the average force applied during braking.
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Since all objects fall with an acceleration of g (neglecting air
resistance) near the Earth’s surface, the force acting on an object
of mass m is given by

  

F = mg.

This force is known as the weight of the object.

Exercise 2D
1. A force of 50 N is applied to a particle of mass

4 kg for 5 seconds only.

(a) Calculate the acceleration for the first
5  seconds.

(b) Write down the acceleration for the next
5  seconds.

(c) Calculate the distance travelled during the
first 10 seconds given that the particle was at
rest initially.

2. A world class sprinter can accelerate from rest to

10 
  

ms−1  in about 2 seconds.  Estimate the
magnitude of the force required to produce this
acceleration.

3. The brakes of a train are required to bring it to
rest from a speed of 80 kph in a distance of
500 m.  The mass of the train is 200 tonnes.

(a) Calculate the average deceleration.

(b) Calculate the average force required to be
exerted by the brakes.

4.

The diagram shows a conveyor belt which is
designed to convey coal dust from a hopper to a
bed.

Initially, there is no dust on the belt.  The force
required to drive the belt in this case is 200 N

and the velocity of the belt is 2 
  

ms−1 .  The length
of the belt is 40 m.

Coal is now allowed to fall on the belt at a rate of
8 kg per second.  The force driving the belt is

adjusted so that the velocity stays at 2 
  

ms−1 .

Draw a diagram of force against time for the first
30 seconds of operation.

5. A toy car of mass 0.04 kg is propelled from rest
by an engine which provides a pulling force of

  

2.7×10−3  N lasting for 8 seconds.

(a) Calculate the acceleration.

(b) Calculate the velocity after 8 seconds.

If the speed of the toy car decreases uniformly to
zero during the next 32 seconds, find the total
distance travelled by the car.

6. A rocket has a mass of 40 tonnes of which 80%
is fuel.  The rocket motor develops a thrust of
1200 kN at all times.

(a) Calculate the acceleration when the rocket is
full of fuel.

(b) Calculate the acceleration just before the fuel
is exhausted.

(c) What is the acceleration after the fuel is
exhausted ?

7. A parachute reduces the speed of a parachutist of

mass 70 kg from 40 
  

ms−1  to  10 
  

ms−1  in
3 seconds.  Calculate the average force exerted
by the parachute.

8. A car travelling at 30 mph is brought to rest in
3 seconds during a collision.  Calculate the
average force exerted on the car during the
collision.  Assume mass of driver is 70 kg and
that of the car is 1100 kg.

hopper

belt

bed
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2.5 How to deal with more than
one force

The diagram shows a block of mass M kg being pulled by a
force P  N over a horizontal floor.  The floor is rough so that
there is a force,  F N, due to frictional resistance acting in the
opposite direction to P.

Since P and F act in opposite directions, their effect is a net
force  

  

P − F  in the direction of P.    Newton’s Second Law is
then applied using the net force to give

  

P − F = Ma (7)

where a is the acceleration of the block.

The net force is often called the resultant force.

Example
A jet aircraft of mass 8 tonnes has a single engine which
generates a force of 40 000 N.  Resistance to motion amounts to
a constant value of 4000 N. [Reminder: 1 tonne   = 1000 kg]

(a) Calculate the acceleration of the aircraft.

(b) The aircraft starts from rest.   Calculate the speed after
12 seconds.

After 12 seconds the engine is switched off.

(c) Calculate the distance travelled by the aircraft before
coming to a halt.

Solution
(a) The net force acting on the aircraft is 

  

40 000− 4000N.
So using equation (7),  

  

40 000− 4000= 8000a.

Solving gives 
  

a = 4.5 ms−2 .

(b) Equation (1) with  
  

u = 0, 
  

a = 4.5 and  
  

t = 12 gives

  

v = 0 + 4.5×12 = 54 ms−1 .

(c) The only horizontal force acting on the aircraft is
resistance.

Using (7),  
  

8000a = 0 − 4000

   
  

⇒
  

a = −0.5 ms−2

where a is the acceleration of the aircraft when the engine
is switched off.  Since 

  

a < 0 the aircraft  is slowing down.

Using (3), 
  

0 = 542 + 2 × −0.5( ) × s

                        
  

s = 2916 m

where s is the distance travelled by the aircraft.

a
40 000

4000

F
P

a
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When equal but opposite forces act on a body, their net effect is
zero, so there is no acceleration and the body remains at rest or in a
state of constant velocity.  Similarly if a body is at rest then the net
force acting on the body must be zero.  If the forces are not equal
then there must be an acceleration.

In the diagram the sitter is not accelerating.  Yet there is at least
one force acting - his weight.  Since people sitting on chairs do not
accelerate downwards there must be an equal but opposite force
acting.  This force is provided by the chair acting on the sitter and
is known as the normal contact force or reaction.

This leads to the following observation for two bodies in contact.

Newton’s Third Law
Whatever the nature of the forces, for two bodies in contact, equal
but opposite forces must act from one to the other.

Example
A manned rocket takes off with an acceleration of 40 

  

ms−2 .  An
astronaut has a mass of 75 kg.  Calculate the magnitude of the
normal contact force acting from the chair on the astronaut.

Solution
The normal contact force is N.  Using (7)

  

75× 40 = N − 75× g.

Using 
  

g = 10 , the value of N is 3750 N.

(This means that the astronaut will experience a force of 5 times
her/his weight .)

Connected bodies
Bodies are generally pushed or pulled by strings, bars or chains.
In a tug of  war match, the opposing teams have no direct contact.
If they are not accelerating then the pulling forces must be equal
and opposite.  Also each member is pulling so there must be an
equal and opposite force in the rope.  Forces in ropes and strings
are known as tensions.  Tensions act inwards along the ropes and
act in equal but opposite pairs.

Activity 11 Tension and pulleys

You will need a pulley, string and 2 newton-meters for this activity.

Tie each end of the string to a newton-meter as shown.

75g

40 ms-2

NN

pull pull
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Pull to tension the string and note the readings.

What is the reading on one newton-meter if the other reads 2 N,
5 N, 9 N?  Is it possible to get different readings?

Now note the readings on the newton-meters if you tension the
string over the pulley in each of the arrangements opposite.

Is it possible to get different readings on each newton-meter?

What can you say about the tension in the string on either side
of a pulley?

Bars and rods can also support thrusts as well as tensions.
Thrusts are denoted by outward facing arrows and they keep
objects apart rather than bring them together.  By using equal
but opposite forces in connectors, it is possible to solve
problems in which more than one body is involved.

Each body can be treated separately by considering the forces
acting on it in isolation together with any tensions or thrusts
from the connectors.

In the diagram a car of mass 1300  kg is connected to a caravan
of mass 700 kg via a coupling.  The car engine develops a
pulling force of 2 kN. (1 kN   = 1000 N)

The motion of the car and caravan can be considered separately.
For the caravan, the pulling force is supplied by the tension in
the coupling.  The car is driven forward by the pulling force of
the engine and held back by the tension, T,  in the coupling.

For the car, using equation (7)

  

2000− T = 1300a

where  a  is the acceleration of the car.

For the caravan

  

T = 700a

since the car and caravan must have the same acceleration.

Adding the two equations gives

  

2000= 2000a

  

⇒   a = 1 ms−2 .

The tension in the coupling is 
  

T = 700×1= 700 N.

T2000

a

T

a

thrust in bar
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Example
A car of mass 1100 kg pulls a caravan of mass 800 kg.  The
force exerted by the engine is 2200  N.  In addition, friction and
air resistance amount to 200 N on the car and 250 N on the
caravan.

Calculate the acceleration of the car and the tension,  T, in the
coupling between the car and the caravan.

Solution
Using (7) for the car

  

2200− 200− T = 1100a

where a is the acceleration of the car.

Using (7) for the caravan

  

T − 250= 800a.

Adding gives

  

1750= 1900a

 
  

⇒  
  

a = 0.921 ms−2 .

Now from
  

T − 250= 800a

  

T = 800× 0.921+ 250

   
  

= 987 N.

Activity 12 Investigating the motion of connected
bodies.

You will need a pulley, string, masses and a stop watch for this
activity.

Set up the pulley and masses as shown in the diagram with the
length of string slightly greater that the distance of the pulley
from the floor.  This distance should be about 1.5 m.  Take

  

M = 120g and 
  

m = 90g.

Pull the 90 g mass down to the floor and measure the distance of
the 120 g mass above it.

Release the system from rest and measure the time taken for the
120 g mass to reach the floor.

Repeat the measurements and average your results.

2200

a

T

200 250

M m
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Use your results to calculate a value for  the acceleration of the
system assuming constant acceleration.

Derive an expression for the acceleration of the system in terms
of  M,  m  and  g.

How well do your results agree?  You might like to repeat the
experiment for other sets of masses.

An assumption generally made in the motion of connected
bodies is that the mass of the connector can be neglected
compared to the masses of the bodies.   Such connectors are
called ‘light’.  Another assumption is that the length of the
connector remains constant, that is, the connector does not
stretch.

Discuss cases of motion where you think that one or both of
the above assumptions would not be valid.

Exercise 2E
1. A block of wood of mass 500 gram is pulled by a

force of 4 N.  The resistance between the wood
and the floor is 2 N.  Calculate the acceleration.

2. Explain what you feel when you get into a lift
which then ascends with an initial acceleration  2
  

ms−2  followed by a steady velocity and finally
has a deceleration of 11 

  

ms−2 .

3. During a car collision, the car’s speed decreases
from 50 mph to zero in 4 seconds.  The driver is
restrained by a car seat belt.  Calculate the
average force on the chest of an 80 kg driver.

4.

The diagram shows a box on the top of a trolley.
The whole system is travelling on level ground at

15 
  

ms−1.  The trolley reduces speed from      15

  

ms−1  to 5 
  

ms−1 in 5 seconds.  The mass of the
box is 20 kg.  As the trolley decelerates, the
frictional force between the box and the trolley
is 25 N.

Describe, in detail, the motion of the box.

5. A shunting train pushes trucks along a level line.
The mass of the locomotive is 20 tonnes and the
mass of each truck is 4 tonnes.  The locomotive
can develop a force of 2000 N.  Given that the
locomotive pushes one truck and ignoring any
resistances,

(a) calculate the acceleration of the locomotive.

(b) calculate the thrust on the truck.

6.

The diagram shows a mass  A of 5 kg initially at
rest on a horizontal table.  A resistance force of
10 N acts against the motion of A which is
connected to mass B of 3 kg by a light,
inextensible string.  The system is released from
rest.

(a) Calculate the acceleration of  A.

(b) Calculate the tension in the string.

After a short time,  B  reaches the floor.

(c) Calculate the acceleration of  A now.

7. A breakdown truck tows a car of mass 1200 kg.
Calculate the tension in the tow rope if the car is

(a) accelerating at 0.5 
  

ms−2  and experiencing a
resistance force of 500 N;

(b) travelling at constant speed but experiencing
a resistance force of 400 N.

A

5 kg

3 kgB

15  ms-1

4 m4 m
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v

mg

2.6   Forming differential equations
In Section 2.1 differentiation is used to describe the rates of
change of displacement and velocity.  The resulting equations,

which include derivatives such as 
  

ds

dt
 and 

dv

dt
, are called

differential equations.

A differential equation is a relation between a function and its
derivatives with respect to some variable, often time or distance.

If a differential equation is used to model a situation, then a
general method is needed to solve the differential equation.

For a ball of mass m falling vertically downwards, neglecting air
resistance, the equation of motion is given by Newton's Second
Law

  

mg= m
dv

dt

giving
  

dv
dt

= g (8)

which is a first order differential equation with a constant right
hand side.  A first order differential equation is a relation between

a function v and its first derivative 
  

dv

dt
.

Integrating equation (8) with respect to t,

  

v = gt + C, (9)

where C is some constant.  For different values of C the graphs of
v against t are parallel straight lines with gradient g.  To pick out a
particular line it is necessary to specify v at some time t.  If the ball
is released from rest when 

  

t = 0, then

  

v = 0 when t = 0.

Putting 
  

t = 0 in equation (9) gives

  

0 = 0 + C

so that 
  

C = 0 and equation (9) becomes

  

v = gt , (10)

which is the straight line passing through the origin O.

t

v

O

u
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t

s

For the differential equation (8), expression (9) is called the
general solution.  The general solution of a first order
differential equation has one arbitrary constant.  The condition

  

v = 0 when t = 0 is called an initial condition  and expression
(10) is a particular solution .  A particular solution satisfies the
differential equation and the initial condition.

If the ball had been given a velocity u at 
  

t = 0 then 
  

v = u at t = 0
and, from equation (9),

  

 u = 0 + C    ⇒ C = u ,

so that the particular solution is now

  

v = u + gt. (11)

This straight line has intercept u on the v axis.

Since 
  

v = ds
dt

,  equation (11) gives

  

ds
dt

= u + gt, (12)

which is another first order differential equation.

Integrating with respect to t gives

  

s = ut + 1
2

gt2 + B, (13)

where B is some constant.  Expression (13) is the general
solution of equation (12).  When 

  

u = 0, the graphs of s against t
are parabolas with 

  

t = 0 as axis of symmetry.  This family of
parabolas have equal gradients

  

ds
dt

= gt

at the same time t.  If
  

s = 0 when 
  

t = 0, then 
  

B = 0 and 
  

s = 1
2

gt2.
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Exercise 2F

1. Taking 
  

g = 10ms−2  sketch the graphs of s against t
from Equation (4),

(a) if 
  

s = 0 when t = 0  and

(i)
  

u = 5 ms−1 (ii)
  

u = −10 ms−1

(b) if
  

s = 6 m when t = 0 and u = 10 ms−1 .

2.7 Direct integration
All the differential equations in the previous section are of the
form

  

d y
dt

= f t( ) , (14)

where 
  

f t( )  is a function of t only.  They can be solved by direct
integration, giving

  

y = f t( )∫ dt + C, (15)

where C is some constant.  Equation (15) is the general solution
of equation (14).

So for example, if

  

dy

dt
= t3

then    
  

y = t3∫ dt + C ⇒ y =
1

4
t4 + C .

Example
Solve the differential equation

  

d y
dt

= t +1
t

given that 
  

y = 2 when t = 1 for t > 0.

2. Integrate to find the general solutions of

(a)
  

dy
dt

= t2 (b)  
  

dy
dt

= cost

(c)
  

dy
dt

= et (d) 
  

dy

dt
= −

1

t2

and sketch their graphs.
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Solution
The general solution is

  

y =
t +1

t
dt + C⌠

⌡

= 1+
1

t





dt + C

⌠
⌡

= dt +
1

t
⌠
⌡

dt + C⌠
⌡

= t + ln t + C.

When  
  

t = 1, y = 2, so that

  

2 = 1+ ln1+ C (
  

ln 1= 0)

  

= 1+ C

giving 
  

C = 1 and the required solution is

  

y = t + ln t +1.

Exercise 2G
1. Find the general solutions of the following:

(a)
  

dy

dt
= 2t3 + 3 (b)  

  

d y

dt
= sin2t

(c)

  

d y

dt
=

1

1+ 3t( )
1
2

(d)  
  

d y

dt
= 1+ 2t( )

1
2

(e)
  

d y

dt
= 1

1+ t
(f)  

  

d y

dt
= t

1+ 2t2 .

2. Find the particular solutions of

(a)

  

dy

dt
= 3t + 4,     y = 0 when t = 0,

(b)

  

dy

dt
= t4 +

1

t 4
,  y = 1 when t = 1,

(c) 

  

e2t dy

dt
+1= 0,   y→ 2  when  t → ∞,

(d)

  

dy

dt
= 2sin2t,     y = 1 when t =

π

4
,

and sketch their graphs.

ln t

ln 1 = 0

O t
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2.8 What happens during
collisions?

When two particles collide, short term forces act during contact.
The forces act to separate the particles although it is possible for
them to stick together.

In the diagram opposite, A  and  B  approach each other and
have a head-on collision.  During the collision, forces act to
prevent the particles passing through each other.  The force F
acts from B to A  for the time that they are in contact and an
equal opposite one from A to B.

The area under the 
  

F − t   curve is known as the impulse of B on
A.  You can replace F by an average force 

  

Fav  such that the area
remains the same.  In that case the impulse, I, is given by

  

I = FavT

where T is the total time that the force acts.

Discuss whether it is true that being struck by a hard ball is
more painful than being struck by a soft ball of the same
mass travelling with the same speed.

What happens when you bring your fist down on a table -
fleshy side first and then knuckles first?

Since there is a force acting from B to A, A will undergo a
change of motion.  Letting  a  be the average acceleration of A
during the collision,

  

F = ma.

Now
  

a =
v − u

T

where u and v are the velocities of A  before and after the
collision respectively.

Combining the two equations gives

   
  

F =
m v− u( )

T
   or

  

FT = mv− mu. (16)

This is known as the impulse equation and is interpreted in the
form

impulse on  A    =   change in momentum of  A.

Similar reasoning leads to

impulse on  B    =   change in momentum of B.

force

time

I

T

A BF F
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When the two bodies are in contact, Newton’s Third Law states
that the impulses are equal and opposite.

Discuss why the impulses are equal and opposite.

Adding the two equations above gives

 change in momentum of  A  +  change in momentum of  B    =  0.

This can be written algebraically to give

  

mv− mu( ) + MV − MU( ) = 0

or
  

MV + mv= MU + mu (17)

In words, this can be expressed as

initial total momentum of the colliding bodies

  =  final total momentum of the colliding bodies.

This is known as the principle of conservation of momentum.

In the diagrams showing the motion before and after impact, the
two bodies are shown as if they are always moving in the same
direction, i.e. to the right.  If, in fact, the bodies are moving
towards each other as shown by the first diagram on the
previous page, then the value of U must be negative when used
in equation (17).

Example
In the diagram A and B have masses 2  kg and 3 kg and move
with initial velocities as shown.  The collision reduces the

velocity of  A to 1 
  

ms−1.  Find the velocity of B after the
collision.

Solution

Impulse on A  
  

= 2 ×1− 2 × 4 = −6 kg 
  

ms−1.

Impulse on B  
  

= + 6 kg 
  

ms−1.

Using the impulse equation

  

+ 6 = 3v − 3× 2

where v is the velocity  of  B after the collision, giving

v = 4 
  

ms−1.

In general, if the masses and original velocities are known, then
the algebraic form of the conservation of momentum is a  single
equation in the two unknowns  V and v.  So one of V and v must

A B

4 ms-1 2 ms-1

A B

BA

Vv

Before impact

After impact

u U
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be measured in order to predict the other.  There is one exception
to this that is easy to deal with.  This occurs when the bodies stick
together or coalesce.  In that case  V    =   v .

Example
The two bodies in the diagram have masses 3 kg and 5  kg

respectively.  They are travelling  with speeds 4 
  

ms−1 and  2 
  

ms−1.
The bodies coalesce on impact.  Find the speed of this body.

Solution
Letting the final common velocity of the coalesced body be v, the
principle of conservation of momentum gives

initial total momentum    =  final total momentum

 
  

⇒
  

3× 4 + 5× 2 = 3+ 5( ) × v

           
  

⇒      
  

v =
22

8
 = 2.75 ms−1.

Case study
Police forces have a well-established procedure for analysing car
crashes.  One of the simplest cases to consider is a head-on
collision with a stationary vehicle.

Discuss the stages in the incident starting from the instant the
car driver sees the stationary  vehicle and the data which the
police would have to collect to analyse the incident.

Example
A car with total mass, including  passengers, of 1300 kg collided
with a stationary car of mass 1100 kg parked without lights on a
dark road.  The police measured the length L  metres of the skid
marks of the moving car before impact and the length l metres of
the skid tracks after impact.  They also took note of the state of the
road.  In order to estimate the decelerations of the cars, the police
drove a car under the same road conditions at 50 mph and found
the length of the skid to be 30 m.  L was found to be 14 and l to be
3.  It is required to find the speed of the moving car before impact.

Solution
First of all, define symbols

U    = speed of car before braking in 
  

ms−1

V    = speed of car just before impact in 
  

ms−1

v    = speed of the two cars just after impact in 
  

ms−1

a    = acceleration in 
  

ms−2 on the surface where
the accident took place.

3 kg 5 kg

4 ms-1 2 ms-1
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The acceleration is found from the trial skid.

Using (3)

  

0 = 22.22 + 2 × a × 30

a   = –8.23 
  

ms−2

The negative acceleration indicates deceleration, as expected.

Next, consider the motion after the collision

  

0 = v2 − 2 × 8.23× 3.

So
  

v = 7.03 ms−1.

Conservation of momentum now yields

  

1300V = 1300+1100( ) × 7.03

       
  

V = 13.0

The velocity of the car before braking can be found from (3).

  

132 = U2 − 2 × 8.23×14

   
  

U = 20.0

So the initial speed of the car was 44.9 mph.

Exercise 2H
1. A particle  A  of mass 250 g collides with a

particle  B  of mass 150 g.  Initially A has

velocity 7 
  

ms−1 and  B  is at rest.  After the

collision, the velocity of  B is 5 
  

ms−1 .

(a) Calculate the impulse of A  on B.

(b) Calculate the velocity of  A after the impact.

2. Two railway trucks, each of mass 8 tonnes, are
travelling in the same direction and along the

same tracks with velocities 3 
  

ms−1  and 1 
  

ms−1

respectively.  When the trucks collide they
couple together.  Calculate the velocity of the
coupled trucks.

3. A service in tennis can result in a speed of
90 mph for the ball.  The return of service is
typically 60 mph.  Given that the mass of a
tennis ball is 60 g, calculate the impulse on the
racket of the return of service.

4. A ball is dropped from a height of 2 m and
rebounds to a height of 75 cm.  Given that the
mass of the ball is 70 g, calculate the magnitude
and direction of the impulse of the floor on the
ball.

5. The world record for the men’s high jump is
approximately 2 m 45 cm.  Estimate the
magnitude of the impulse needed for a 70 kg
athlete to clear this height. [Hint: For a simple
model assume that the athlete jumps vertically].

6. A child of mass 40 kg runs and jumps onto a
skateboard of mass 4 kg.  If the child was

moving forward at 0.68 
  

ms−1  when he jumped
onto the skateboard, find the speed at which
they move.

7. A tow truck of mass 3 tonnes is attached to a car
of mass 1.2 tonnes by a rope.  The truck is

moving at a constant 3 
  

ms−1  when the tow rope
becomes taut and the car begins to move.
Assume that both vehicles move at the same
speed once the rope is taut, and find this speed.
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2.9 Miscellaneous Exercises
1. Bill is going to take a penalty in a hockey game.

He can hit the ball at a speed of 25
  

ms−1.  Initially
the ball is placed 2.5 m from the goal line.  The
width of the goal is 1.5 m.  John, the goalie, can

move himself at a speed of 6 
  

ms−1 .   John stands
in the middle of the goal.

(a) What range of directions should Bill hit the
ball to score?  (Assume he hits the ball along
the surface.)

(b) What difference would it make to the answer
to (a) if John’s reaction time of 0.25 seconds
were taken into consideration ?

(c) Generalise to arbitrary velocities for John and
Bill.

2. Two cars  A and  B  are initially at rest side by
side.  A  starts off on a straight track with an

acceleration of 2 
  

ms−2 .  Five seconds later  B
starts off on a parallel track to  A, with

acceleration 3.125 
  

ms−2 .

(a) Calculate the distance travelled by  A  after 5
seconds.

(b) Calculate the time taken for  B  to catch up
A.

(c) Find the speeds of  A  and  B  at that time.

3.

The diagram shows part of an athletics track laid
out for the changeover in a 4 by 100 m relay
race.  Assume the incoming runner  A  is moving

at 10 
  

ms−1  and the receiving runner  B  starts

from rest with an acceleration of 4.5 
  

ms−2 .  The
receiver starts running as soon as the incoming
runner enters the box.  Where does the
changeover occur?

4. A motorist approaches a set of traffic lights at
45 mph.  Her reaction time is 0.7 seconds and the
maximum safe deceleration of the car is          6.5

  

ms−2 .

(a) The motorist sees the lights turn to amber.
What is the minimum distance from the lights
that she can safely bring the car to a stop?

(b) The lights remain on amber for 2 seconds,
before turning red.  As the motorist
approaches the lights she sees them turn
amber and decides to try to get past the lights
before they turn red.  What is the maximum
distance from the lights that the motorist can
do this at a constant speed of 45 mph?

(c) Suggest an improvement to the model in (b),
where constant speed was assumed.  What
difference does this make to the maximum
distance ?

(d) Generalise your answers to (a), (b) and (c) for

an arbitrary approach velocity v 
  

ms−1 .

5. A college campus has a road passing through it.
The speed of vehicles along the road is to be
reduced by placing speed bumps at intervals
along the road.  The purpose of the bumps is to
force vehicles to go very slowly over them.

Suppose the maximum speed of a vehicle is 30
mph and the bumps are placed every D metres.
Suppose the vehicle drives over a bump at 5 mph

and its maximum acceleration is 2 
  

ms−2 .

(a) Sketch a velocity time diagram. Given that
the vehicle just achieves its maximum speed,
calculate the value of D, making simplifying
assumptions where necessary.

(b) Consider a range of speeds at which the
vehicle crosses the bumps.  Find the
dependence of  D on the speed,  V, that the
vehicle crosses the bumps.  Assume a
maximum speed of 20 mph.

6. A ball is thrown vertically upwards with an

initial velocity of 30 
  

ms−1.  One second later,
another ball is thrown upwards with an initial

velocity of u 
  

ms−1 .  The particles collide after a
further 2 seconds.  Find the value of  u.

7. The velocity of a car every 10 seconds is given in
the following table.

 t (sec)  0 10 20 30 40 50 60

 v(kph)  0 34 54 66 74 78 80

Draw a velocity time graph for the motion of the
car.  Use your graph to estimate

(a) the acceleration of the car after 25 seconds.

(b) the displacement of the car after 60 seconds.

8. A force F N acts on a particle of mass 2 kg
initially at rest.  After 4 seconds the
displacement of the particle is 20 m.  Find the
value of  F.

A B

10 m 20 m
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9. A locomotive has a pulling force of 125 kN  and
a mass of 120 tonnes.  On a level track it travels
at a steady speed of 72 kph.

(a) What is the resistance to motion?  Assuming
that the resistance is proportional to the
square of the velocity, find the constant of
proportionality.

(b) Calculate the acceleration at 54 kph.

10. A particle of mass 4 kg is released from rest and
falls under gravity against a resistance to motion
of 2v N where v is its velocity in ms–1.

Determine its terminal velocity.  How long does
it take to reach a velocity of 15 ms–1?

11. A particle of mass 1 kg is released from rest and

falls under gravity against resistance of 

  

v2

2
N

where v is its velocity in ms–1. Determine its
terminal velocity.  How far does the body fall as
its velocity increases from 2 ms–1 to 4 ms–1?

12. Crowd control in some countries can involve the
use of high pressure hoses.  These spray water at
people and can knock them over.  The velocity of

the water is 20 
  

ms−1  and the jet has a diameter of
10 cm.  Assuming that the momentum of the jet
is destroyed on hitting the person, calculate the
force on the person.

13. The gravitational attraction of the Earth on a

particle of mass m  is 
  

km

r 2
   where r  is the

distance of the particle from the Earth’s centre
and k is a constant.

Calculate the acceleration of a particle of mass
m  at  a distance 120 km above the Earth’s
surface.  [The radius of the Earth is 6400 km and

at the Earth's surface 
  

g = 9.8 ms−2 .]

14. A transport system is to be designed around a
rail running over a set of pulse generators spaced
10 m apart and giving a force of 10 N acting 1 m
either side of each generator to boost the
velocity of the vehicle.

(a) Sketch a velocity-time diagram.

(b) Find the velocity increase after 55 m if the
mass of the vehicle is 50 kg.

15. A locomotive of mass 80 tonnes pulls two trucks
each with mass 9 tonnes.  The pulling force of
the locomotive is 14000 N.  Resistance to motion
can be ignored.  Calculate the acceleration of the
system and the tension in each of the couplings.

16.

Two bodies A and B of mass 4 kg and 2 kg
respectively are attached by a light inextensible
string passing over a smooth pulley.  A rests on a
table and B hangs over the side.  Resistance
forces on A amount to 8 N.

The system is released from rest.  Calculate the
acceleration of the system and the tension in the
string.  Find the speed of B when it has fallen
2m.

17. A locomotive of mass M kg pulls a train of

trucks.  The mass of each truck is 
  

M

10
 kg.

The pulling force of the engine is F.  How many
trucks can the engine pull so that the tension in
the coupling between the locomotive and the

first truck is greater than 
  

F

2
?

18. Rockets are made in sections known as stages.
This is to enable a stage to be jettisoned once its
fuel is used up.  In a 3 stage rocket the mass of
the lower stage is 1800 tonnes, the mass of the
middle stage is 800 tonnes and the mass of the
upper stage is 180 tonnes.  The stages are
coupled together by rings which can withstand a

thrust of 
  

1.65×107 N .  Calculate the maximum
safe acceleration of the rocket

(a) when all 3 stages are present

(b) when the upper 2 stages are present.

19.

The diagram shows a case of mass 5 kg on the
floor of a trolley.  Resistance force amounts to
5 N.  The trolley is subject to a deceleration of

8 
  

ms−2  until it is brought to rest from a speed of

40 
  

ms−1 .

Describe in detail the motion of the case.

20. A simple device for measuring acceleration (an
accelerometer) consists of a mass m attached by
a light inextensible string to the roof of a

vehicle.

Sketch diagrams to show what  happens to this
arrangement when :

(a) the vehicle accelerates;

(b) the vehicle decelerates;

(c) the vehicle moves with uniform velocity.

3 m 2 m5 kg

4 kg

2 kg

A

B
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21. A train of total mass 110 tonnes and velocity
80 kph crashes into a stationary locomotive of
mass 70 tonnes.

(a) Calculate the velocity of the combined
system immediately after impact.

The trains plough on for a further 40 m.

(b) Calculate the average deceleration and the
resistance to motion.

22. A pile-driver consists of a pile of mass 200 kg
and a driver of mass 40 kg.  The driver drops on

the pile with velocity 6 ms
  

−1  and sticks to the top
of the pile.

(a) Calculate the velocity of the pile immediately
after impact.

Resistances to motion of the pile amount to
1400 N.

(b) Calculate the distance penetrated by the pile.

23. Two uniform smooth spheres, A of mass 0.03 kg
and B of mass 0.1 kg, have equal radii and are
moving directly towards each other with speeds

of 7 ms
  

−1  and 
  

4 ms−1  respectively.  The spheres
collide directly and B is reduced to rest by the
impact.  State the magnitude of the impulse
experienced by B and find the speed of A after
impact.        (AEB)

24. Two particles A and B of masses m and 2m
respectively, are attached to the ends of a light
inextensible string which passes over a fixed
smooth pulley.  The particles are released from
rest with the parts of the string on each side of
the pulley hanging vertically.  When particle B
has moved a distance h it receives an impulse
which brings it momentarily to rest.  Find, in
terms of m, g and h, the magnitude of this
impulse.        (AEB)

25. A vehicle travelling on a straight horizontal track
joining two points A and B accelerates at a

constant rate of 0.25 ms
  

−2  and decelerates at a

constant rate of 1 ms
  

−2 .  It covers a distance of
2.0 km from A to B by accelerating from rest to a

speed of v ms
  

−1and travelling at that speed until
it starts to decelerate to rest.  Express in terms of
v the times taken for acceleration and
deceleration.

Given that the total time for the journey is
2.5 minutes find a quadratic equation for v and
determine v, explaining clearly the reason for
your choice of the value of v.        (AEB)

  

V ms−126.

The diagram shows the speed-time graph for a
train which travels from rest in one station to rest
at the next station.  For each of the time intervals
OA, AB and BC, state the value of the train's
acceleration.

Calculate the distance between the stations.
        (AEB)

27. When a train accelerates its acceleration is always

  

f  km h−2  and when it decelerates its retardation is

always 3
  

f  km h−2 .  The acceleration is such that

the train can accelerate from rest to 60 
  

km h−1 in
a distance of 1.5 km.  Find

(a) f,

(b) the time taken to reach a speed of 60 
  

km h−1

from rest,

(c) the distance travelled in decelerating from

60 
  

km h−1 to rest.

On a journey of over 40 km the train is
accelerated from rest to a speed of 60 

  

km h−1 and
kept at that speed until retarded to rest at the end
of the journey.  On one such journey the train is
required, roughly half way through the journey,
to slow down to rest, stay at rest for 3 minutes
and then accelerate back to a speed of 60 

  

km h−1.

(d) Determine how late the train is on arrival at
rest at its destination.         (AEB)

28. Show that, in the usual notation,  
  

v
dv

dx
= d2x

dt2 .

A particle P moves along the positive x-axis such
that when its displacement from the origin O is
x m, its acceleration in the positive x direction is

  

10x − 2x3( ) ms−2 .   The speed of P is 
  

15 ms−1

  

when x = 2.  Find an expression for the speed of P
for any value of x.

Determine the values of x for which P comes
instantaneously to rest.         (AEB)

20

80 420 460
t sO

0
B CA
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29. A particle moving in a straight line with speed

u ms
  

−1  is retarded uniformly for 16 seconds so

that its speed is reduced to 
  

1
4

u ms−1.   It travels at

this reduced constant speed for a further 16
seconds.  The particle is then brought to rest by
applying a constant retardation for a further
8 seconds.  Draw a time-speed graph and hence,
or otherwise,

(a) express both retardations in terms of u,

(b) show that the total distance travelled over the
two periods of retardation is 11u m,

(c) find u given that the total distance travelled
in the 40 seconds in which the speed is

reduced from u ms
  

−1 to zero is 45 m.
       (AEB)

30. A tram travelling along a straight track starts
from rest and accelerates uniformly for 15
seconds.  During this time it travels 135 metres.
The tram now maintains a constant speed for a
further one minute.  It is finally brought to rest
decelerating uniformly over a distance of 90
metres.  Calculate the tram's acceleration and
deceleration during the first and last stages of
the journey.  Also find the time taken and the
distance travelled for the whole journey.

 (AEB)

31. A train travelling at 50 ms
  

−1  applies its brakes on
passing a yellow signal at a point A and
decelerates uniformly, with a deceleration of
1 ms

  

−2 , until it reaches a speed of 10 ms
  

−1.  The
train then travels for 2 km at the uniform speed of
10 ms

  

−1  before passing a green signal.  On passing
the green signal the train accelerates uniformly,
with acceleration 0.2 ms

  

−2 , until it finally reaches
a speed of 50 ms

  

−1  at a point B.  Find the distance
AB and the time taken to travel that distance.

       (AEB)
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